Resolution
Global GMS
ES Strata
Build. Blocks
Comb. Appl.
HCA Proving
Arrangements
Branches
Classify
Coding
Deformations
Equidim Part
Existence
Finite Groups
Flatness
Genus
Hilbert Series
Membership
Nonnormal Locus
Normalization
Primdec
Puiseux
Plane Curves
Saturation
Solving
Space Curves
Spectrum
Number of Branches: Checking plausibility
LIB "primdec.lib";

ring r=0,(x,y,z),ds;
ideal i=x^4-y*z^2,x*y-z^3,y^2-x^3*z;
qhweight(i);
==> 1,2,1
The isolated space curve singularity is quasihomogeneous.
resolution ires=mres(i,0);
ires;
==>
        1       3       2
      rr <--  rr <--  rr

      0       1       2
    
It is of Cohen-Macaulay type t=2.
LIB "sing.lib";
T_1(i);
==>
   // dim T_1 = 13
   _[1]=gen(6)+2z*gen(5)
   _[2]=gen(4)+3x2*gen(2)
   _[3]=gen(3)+gen(1)
   _[4]=x*gen(5)-y*gen(2)-z*gen(1)
   _[5]=x*gen(1)-z2*gen(2)
   _[6]=y*gen(5)+3x2z*gen(2)
   _[7]=y*gen(2)-z*gen(1)
   _[8]=2y*gen(1)-z2*gen(5)
   _[9]=z2*gen(5)
   _[10]=z2*gen(1)
   _[11]=x3*gen(2)
   _[12]=x2z2*gen(2)
   _[13]=xz3*gen(2)
   _[14]=z4*gen(2)
    
The Tjurina number is 13. As the quasihomogeneous space curve singularity is Cohen-Macaulay of codimension 2, it is unobstructed and hence we can apply the formula
tau = mu + t
-1

Hence the Milnor number is 12, in particular it is even. By the formula
mu
= 2 delta - r +1
this contradicts the number of branches (= 2) we computed before.
==> We have to decompose the second component further, e.g. using normalization.
<-- Branches of an isolated space curve singularity
<-- computed via Primary Decomposition
--> computed via Normalization
--> computed via Factorizing Gröbner

KL, 06/03 http://www.singular.uni-kl.de