Resolution
Global GMS
ES Strata
Build. Blocks
Comb. Appl.
HCA Proving
Arrangements
Branches
Classify
Coding
Deformations
Equidim Part
Existence
Finite Groups
Flatness
Genus
Hilbert Series
Membership
Nonnormal Locus
Normalization
Primdec
Puiseux
Plane Curves
Saturation
Solving
Space Curves
Spectrum
SINGULAR example: Saturation
LIB "elim.lib";
LIB "primdec.lib";

ring r=0,(x,y,z),dp;
ideal I1=x5z3,xyz,yz4;
primdecGTZ(I1);   // the 4 components (2 embedded)
==>
   [1]:            [2]:            [3]:            [4]:
      [1]:            [1]:            [1]:            [1]:
         _[1]=z          _[1]=y          _[1]=z3         _[1]=z4
                         _[2]=x5         _[2]=y          _[2]=x
      [2]:            [2]:            [2]:            [2]:
         _[1]=z          _[1]=y          _[1]=z          _[1]=z
                         _[2]=x          _[2]=y          _[2]=x

    
We compute the saturation of I1 w.r.t. <z> and the corresponding saturation exponent:
ideal I2=z;
sat(I1,I2);
==>
   [1]:
        _[1]=y
        _[2]=x5
   [2]:
        4
    
We see that three components (1 isolated and 2 embedded) are removed.


A second example: to compute the projective subscheme defined by a homogeneous ideal, we compute the saturation w.r.t. the irrelevant ideal.

ideal I=(x2z+y3)*maxideal(2);
sat(I,maxideal(1));
==>
   [1]:
        _[1]=y3+x2z
   [2]:
        2
    


KL, 06/03 http://www.singular.uni-kl.de