Classify
Coding
Deformations
Equidim Part
Existence
Finite Groups
Flatness
Genus
Hilbert Series
Membership
Monodromy
Normalization
Primdec
Puiseux
Plane Curves
Solving
Space Curves
Spectrum
Versal Deformation - Base Space
C is given by the 2x2-minors of the matrix:
over C[[x,y,z,u,v]].

LIB "deform.lib";
ring r=0,(x,y,z,u,v),ds;
matrix m[2][4]=x,y,z,u,y,z,u,v;
ideal f0=minor(m,2);

versal(f0);
==> // Result belongs to ring Px.
// Equations of total space of miniversal deformation are
// given by Fs, equations of miniversal base space by Js.
// Make Px the basering and list objects defined in Px by
// typing:
setring Px; show(Px);
setring Px;
Js;
==> Js[1,1]=BD
Js[1,2]=AD-D2
Js[1,3]=-CD

Lille, 08-07-02 http://www.singular.uni-kl.de