Classify
Coding
Deformations
Equidim Part
Existence
Finite Groups
Flatness
Genus
Hilbert Series
Membership
Monodromy
Normalization
Primdec
Puiseux
Plane Curves
Solving
Space Curves
Spectrum
Geometric Genus of Projective Curves - SINGULAR Example
LIB "normal.lib";
ring r=32003,(x,y,z,w,u),dp;
ideal i=x2+y2+z2+w2+u2,x3+y3+z3,z4+w4+u4;  // a curve in P^4
genus(i);
==>
49
To obtain more information on the performed computations, you should raise the printlevel:
printlevel=3;
genus(i);
==>
The ideal of the projective curve:

  J[1]=x2+y2+z2+w2+u2
  J[2]=xy2-y3+xz2-z3+xw2+xu2
  J[3]=z4+w4+u4
  J[4]=y4+16001xyz2+y2z2-16001xz3-16001yz3+16001xyw2+y2w2+z2w2+16001xyu2+y2u2+z2u2+w2u2

The coefficients of the Hilbert polynomial:   -48,24
arithmetic genus:   49
degree:   24

the projected curve:

  10889x24-4693x22y2-3594x20y4 ... many terms ... -5931x2t22-15448y2t22-7101yt23+t24

the arithmetic genus of the plane curve:   253

analyse the singularities

......

   many data

......


The projected plane curve has locally:

  singularities:  204
  branches:       408
  nodes:          204
  cusps:            0
  Tjurina number: 204
  Milnor number:  204
  delta of the projected curve: 204
  delta of the curve:             0
  genus:           49

Lille, 08-07-02 http://www.singular.uni-kl.de