Classify
Coding
Deformations
Equidim Part
Existence
Finite Groups
Flatness
Genus
Hilbert Series
Membership
Monodromy
Normalization
Primdec
Puiseux
Plane Curves
Solving
Space Curves
Spectrum
Hilbert Series - An Example
Compute the (first and second) Hilbert series of a homogeneous ideal.

Twisted cubic in P3 : V = ( xz-y2=0 , xw-yz=0 , yw-z2=0 )

ring r=0,(x,y,z,w),dp;
ideal i=xz-y2,xw-yz,yw-z2;
i=std(i);
hilb(i);
==> //  1 t^0
// -3 t^2
//  2 t^3

//  1 t^0
//  2 t^1
//  codimension = 2 dimension = 2 degree = 3

1st Hilbert series: Q(t) = 1-3t2+2t3 , 2nd Hilbert series: P(t) = 1+2t .

This result can be used to compute the Hilbert polynomial H of M = K[x,y,z,w] / I :

$\displaystyle P(t) = \sum_{j=

intvec a=hilb(i,2);
ring s=0,t,ls;
poly h; int j;
for (j=1; j<=size(a); j=j+1){h=h+a[j]*(t-j+2);} h;
==> 1+3t

Hilbert polynomial: H(t) = 1+3t .

Hilbert series (Mathematical background)


Lille, 08-07-02 http://www.singular.uni-kl.de