Classify
Coding
Deformations
Equidim Part
Existence
Finite Groups
Flatness
Genus
Hilbert Series
Membership
Monodromy
Normalization
Primdec
Puiseux
Plane Curves
Solving
Space Curves
Spectrum
MuPAD- SINGULAR Connection - Primdec Demo
Task: Using MuPAD, plot the variety given by the ideal

I=(y2z5-x2y2z2+y2z4-z6-z5+x4-x2z2,-y3z3+yz4+x2yz).

Step 0: Load the (MuPAD) library sing.mu and define I:
>> read("sing.mu"):
>> Ideal:=Dom::Ideal(Dom::DistributedPolynomial([x,y,z],Dom::Rational)):
>> Id:=Ideal([poly(...,[x,y,z]),poly(...)]):
Step 1: Calculate a primary decomposition of I using Singular.
>> primDec:=sing::primdecGTZ(Id)):
>> primeComps:=map(primDec, op, 2);
[[x^2-y^2*z^2+z^3],[x^4,z],[y,x^2-z^2-z^3]]
Step 2: For each prime component, calculate the normalization of the radical, i.e., a parametrization using Singular.
>> paramComps:=map(primeComps, sing::parametrize)
[[s^2*t-t^3,s,s^2-t^2], [0,s,0], [s^3-s,0,s^2-1]]
Step 3: Plot the parametrizations using MuPAD.
>> plot3d([Mode=Surface,paramComps[1],s=[-2..2],t=[-2..2]]);


Lille, 08-07-02 http://www.singular.uni-kl.de