Classify
Coding
Deformations
Equidim Part
Existence
Finite Groups
Flatness
Genus
Hilbert Series
Membership
Monodromy
Normalization
Primdec
Puiseux
Plane Curves
Solving
Space Curves
Spectrum
Space Curve Singularities
The ideal of a space curve singularity X is generated by the maximal minors of its presentation matrix M:

Any deformation of X is given by a perturbation of M.

where
with g denoting the map
$\displaystyle \Mat (k+1, k+1, \mathbb{C}[[\underline{x}]]) \times \Mat (k
, k,
\mathbb{C}[[\underline{x}]])$ $\displaystyle \stackrel{g}{\longrightarrow}$ $\displaystyle \Mat (k, k+1,
\mathbb{C}[[\underline{x}]])\,,$  
$\displaystyle (A,B)$ $\displaystyle \longmapsto$ $\displaystyle AM + MB \,.$  


Stratification - An Example

Lille, 08-07-02 http://www.singular.uni-kl.de