Classify
Coding
Deformations
Equidim Part
Existence
Finite Groups
Flatness
Genus
Hilbert Series
Membership
Monodromy
Normalization
Primdec
Puiseux
Plane Curves
Solving
Space Curves
Spectrum
Moduli Spaces for Space Curve Singularities - An Example
stratum  t1 t2 t3 t4 t5 t6 t7 t8 dim normal form
# 1 0 0 0 0 0 0 0 0 0
z y2 x9
0 z-x7 y
# 2 0 0 0 * 0 0 0 0 1
z y2+x6y x9
0 z-x7 y
# 3 * 0 0   0 0 0 0 2
z y2+t4 x6y x9
x6 z-x7 y
# 4   0 0   * 0 0 0 3
z y2+x14 x9
t1 x6 z-x7 y
# 5   * 0     0 0 0 4
z y2+t4 x6y+t5 x14 x9
x5 z-x7 y
# 6     0     * 0 0 5
z y2+x13 x9
t2 x5+t1 x6 z-x7 y
# 7   0 0   0 t82 0 * 3
z y2+t4 x6y+3x11+x13+t5 x14 x9
t1 x6 z-x7 y
# 8   0 0   * t82 0 * 4
z y2+3x11+x13+x14 x9
t1 x6 z-x7 y
# 9   * 0     t82 0 * 5
z y2+t4 x6y+3x11+x13+t5 x14 x9
x5 z-x7 y
# 10     0     not t82 0 * 6
z y2+x11y+t6 x13 x9
t2 x5+t1 x6 z-x7 y
# 11     *       0   7
z y2+t4x6y+t8x11+t7 x12+t6x13+t5x14 x9
x4 z-x7 y
# 12             *   8
z y2+t8 x11+x12 x9
t3 x4+t2 x5+t1 x6 z-x7 y
Moduli Spaces for Space Curve Singularities

Lille, 08-07-02 http://www.singular.uni-kl.de