|
Hertling's Theorem for Semiquasihomogeneous
Singularities
type |
f |
mu(f) |
denominators of SN |
g(f) |
P8 |
z3+y3+xyz+x3 |
8 |
3 |
0 |
X9 |
y4+x2y2+x4 |
9 |
4 |
0 |
J10 |
y6+x2y2+x3 |
10 |
6 |
0 |
E12 |
x3+xy5+y7 |
12 |
21 |
0 |
E13 |
x3+xy5+y8 |
13 |
15 |
0 |
E14 |
x3+xy6+y8 |
14 |
24 |
0 |
Z11 |
x3y+xy4+y5 |
11 |
15 |
0 |
Z12 |
x(x2y+xy3+y4) |
12 |
11 |
0 |
Z13 |
x3y+xy5+y6 |
13 |
18 |
0 |
W12 |
x4+y5+x2y3 |
12 |
20 |
0 |
W13 |
x4+xy4+y6 |
13 |
16 |
0 |
Q10 |
x3+y4+yz2+xy3 |
10 |
24 |
0 |
Q11 |
x3+y2z+xz3+z5 |
11 |
18 |
0 |
Q12 |
x3+y5+yz2+xy4 |
12 |
15 |
0 |
S11 |
x4+y2z+xz2+x3z |
11 |
16 |
0 |
S12 |
x2y+y2z+xz3+z5 |
12 |
13 |
0 |
U12 |
x3+y3+z4+xyz2 |
12 |
12 |
0 |
W1,0 |
x4+x2y3+y6 |
15 |
12 |
0 |
Q2,0 |
x3+yz2+x2y2+xy4 |
14 |
12 |
0 |
S1,0 |
x2z+yz2+y5+zy3 |
14 |
10 |
0 |
U1,0 |
x3+xz2+xy3+y3z |
14 |
9 |
0 |
E18 |
x3+y10+xy7 |
18 |
30 |
0 |
E19 |
x3+y11+xy7 |
19 |
21 |
0 |
E20 |
x3+y11+xy8 |
20 |
33 |
0 |
Z18 |
x3y+y9+xy6 |
18 |
17 |
0 |
Z19 |
x3y+y9+xy7 |
19 |
27 |
0 |
W17 |
x4+y7+xy5 |
17 |
20 |
0 |
W18 |
x4+y7+x2y4 |
18 |
28 |
0 |
Q16 |
x3+yz2+xy5+y7 |
16 |
21 |
0 |
Q17 |
x3+yz2+xy5+y8 |
17 |
30 |
0 |
Q18 |
x3+yz2+xy6+y8 |
18 |
48 |
0 |
S16 |
x2z+yz2+xy4+y6 |
16 |
17 |
0 |
U16 |
x3+xz2+y5+x2y2 |
16 |
15 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
x5+x4y2+y7 |
24 |
35 |
0 |
0 |
x6+x5y2+y8 |
35 |
24 |
0 |
Hertlings Conjecture
|