Classify
Coding
Deformations
Equidim Part
Existence
Finite Groups
Flatness
Genus
Hilbert Series
Membership
Monodromy
Normalization
Primdec
Puiseux
Plane Curves
Solving
Space Curves
Spectrum
Hertling's Theorem for Semiquasihomogeneous Singularities
type f mu(f) denominators of SN g(f)
P8 z3+y3+xyz+x3 8 3 0
X9 y4+x2y2+x4 9 4 0
J10 y6+x2y2+x3 10 6 0
E12 x3+xy5+y7 12 21 0
E13 x3+xy5+y8 13 15 0
E14 x3+xy6+y8 14 24 0
Z11 x3y+xy4+y5 11 15 0
Z12 x(x2y+xy3+y4) 12 11 0
Z13 x3y+xy5+y6 13 18 0
W12 x4+y5+x2y3 12 20 0
W13 x4+xy4+y6 13 16 0
Q10 x3+y4+yz2+xy3 10 24 0
Q11 x3+y2z+xz3+z5 11 18 0
Q12 x3+y5+yz2+xy4 12 15 0
S11 x4+y2z+xz2+x3z 11 16 0
S12 x2y+y2z+xz3+z5 12 13 0
U12 x3+y3+z4+xyz2 12 12 0
W1,0 x4+x2y3+y6 15 12 0
Q2,0 x3+yz2+x2y2+xy4 14 12 0
S1,0 x2z+yz2+y5+zy3 14 10 0
U1,0 x3+xz2+xy3+y3z 14 9 0
E18 x3+y10+xy7 18 30 0
E19 x3+y11+xy7 19 21 0
E20 x3+y11+xy8 20 33 0
Z18 x3y+y9+xy6 18 17 0
Z19 x3y+y9+xy7 19 27 0
W17 x4+y7+xy5 17 20 0
W18 x4+y7+x2y4 18 28 0
Q16 x3+yz2+xy5+y7 16 21 0
Q17 x3+yz2+xy5+y8 17 30 0
Q18 x3+yz2+xy6+y8 18 48 0
S16 x2z+yz2+xy4+y6 16 17 0
U16 x3+xz2+y5+x2y2 16 15 0
0 0 0 0 0
0 x5+x4y2+y7 24 35 0
0 x6+x5y2+y8 35 24 0

Hertlings Conjecture

Lille, 08-07-02 http://www.singular.uni-kl.de