D.2.8.1 changechar | | make a copy of basering [ring r] with new char c |
D.2.8.2 changeord | | make a copy of basering [ring r] with new ord o |
D.2.8.3 changevar | | make a copy of basering [ring r] with new vars v |
D.2.8.4 defring | | define a ring R in specified char c, n vars v, ord o |
D.2.8.5 defrings | | define ring Sn in n vars, char 32003 [p], ord ds |
D.2.8.6 defringp | | define ring Pn in n vars, char 32003 [p], ord dp |
D.2.8.7 extendring | | extend given ring by n vars v, ord o and name it R |
D.2.8.8 fetchall | | fetch all objects of ring R to basering |
D.2.8.9 imapall | | imap all objects of ring R to basering |
D.2.8.10 mapall | | map all objects of ring R via ideal i to basering |
D.2.8.11 ord_test | | test wether ordering of R is global, local or mixed |
D.2.8.12 ringtensor | | create ring, tensor product of rings s,t,... |
D.2.8.13 ringweights | | intvec of weights of ring variables of ring r |
D.2.8.14 preimageLoc | | computes preimage for non-global orderings |
D.2.8.15 rootofUnity | | the minimal polynomial for the n-th primitive root of unity (parameters in square brackets [] are optional) |
D.2.8.16 optionIsSet | | check if as a string given option is set or not. hasFieldCoefficient check if the coefficient ring is considered a field hasGFCoefficient check if the coefficient ring is GF(p,k) |
D.2.8.17 hasNumericCoeffs | | check for use of floating point numbers |
D.2.8.18 hasCommutativeVars | | non-commutive or commnuative polynomial ring |
D.2.8.19 hasGlobalOrdering | | global versus mixed/local monomial ordering |
D.2.8.20 hasMixedOrdering | | mixed versus global/local ordering |
D.2.8.21 hasFieldCoefficient | | coefficients are a field |
D.2.8.22 hasAlgExtensionCoefficient | | coefficients are an algebraic extension |
D.2.8.23 isQuotientRing | | ring is a qotient ring |
D.2.8.24 isSubModule | | check if I is in J as submodule |
D.2.8.25 changeordTo | | change the ordering of a ring to a simple one |
D.2.8.26 addvarsTo | | add variables to a ring |
D.2.8.27 addNvarsTo | | add N variables to a ring |