Home Online Manual
Top
Back: kontrahom
Forward: tensorMod
FastBack: grwalk_lib
FastForward: integralbasis_lib
Up: homolog_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.4.7.18 KoszulHomology

Procedure from library homolog.lib (see homolog_lib).

Compute:
A presentation of the p-th Koszul homology module H_p(f_1,...,f_k;M'), where M'=coker(M) and f_1,...,f_k are the given (ordered list of non-zero) generators of the ideal I.
The computed presentation is minimized via prune.
In particular, if H_p(f_1,...,f_k;M')=0 then the return value is 0.

Return:
module H, s.th. coker(H) = H_p(f_1,...,f_k;M').

Note:
size of input ideal has to be <= 20.

Example:
 
LIB "homolog.lib";
ring R=0,x(1..3),dp;
ideal x=maxideal(1);
module M=0;
KoszulHomology(x,M,0);  // H_0(x,R), x=(x_1,x_2,x_3)
==> _[1]=x(3)*gen(1)
==> _[2]=x(2)*gen(1)
==> _[3]=x(1)*gen(1)
KoszulHomology(x,M,1);  // H_1(x,R), x=(x_1,x_2,x_3)
==> _[1]=0
qring S=std(x(1)*x(2));
module M=0;
ideal x=maxideal(1);
KoszulHomology(x,M,1);
==> _[1]=-x(3)*gen(1)
==> _[2]=-x(2)*gen(1)
==> _[3]=-x(1)*gen(1)
KoszulHomology(x,M,2);
==> _[1]=0