|
D.4.14.2 PrimdecA
Procedure from library mprimdec.lib (see mprimdec_lib).
- Usage:
- PrimdecA (N[, i]); module N, int i
- Return:
- list l
a (not necessarily minimal) primary decomposition of N
computed by a generalized version of the algorithm of Shimoyama/Yokoyama,
if i!=0 is given, the factorizing Groebner is used to compute the
isolated primes
Example:
| LIB "mprimdec.lib";
ring r=0,(x,y,z),dp;
module N=x*gen(1)+ y*gen(2),
x*gen(1)-x2*gen(2);
list l=PrimdecA(N);
l;
==> [1]:
==> [1]:
==> _[1]=x*gen(1)+y*gen(2)
==> _[2]=x*gen(2)-gen(1)
==> [2]:
==> _[1]=x2+y
==> [2]:
==> [1]:
==> _[1]=gen(2)
==> _[2]=x*gen(1)
==> [2]:
==> _[1]=x
==> [3]:
==> [1]:
==> _[1]=y*gen(1)
==> _[2]=y*gen(2)
==> _[3]=x*gen(1)
==> _[4]=x*gen(2)
==> [2]:
==> _[1]=y
==> _[2]=x
|
|