|
D.4.21.7 intersectZ
Procedure from library primdecint.lib (see primdecint_lib).
- Return:
- the intersection of the input ideals
- Note:
- this is an alternative to intersect(I,J) over integers,
is faster for some examples and should be kept for debug purposes.
Example:
| LIB "primdecint.lib";
ring R=integer,(a,b,c,d),dp;
ideal I1=9,a,b;
ideal I2=3,c;
ideal I3=11,2a,7b;
ideal I4=13a2,17b4;
ideal I5=9c5,6d5;
ideal I6=17,a15,b15,c15,d15;
ideal I=intersectZ(I1,I2); I;
==> I[1]=9
==> I[2]=3b
==> I[3]=3a
==> I[4]=bc
==> I[5]=ac
I=intersectZ(I,I3); I;
==> I[1]=99
==> I[2]=3b
==> I[3]=3a
==> I[4]=bc
==> I[5]=ac
I=intersectZ(I,I4); I;
==> I[1]=39a2
==> I[2]=13a2c
==> I[3]=51b4
==> I[4]=17b4c
==> I[5]=3a2b4
==> I[6]=a2b4c
I=intersectZ(I,I5); I;
==> I[1]=78a2d5
==> I[2]=117a2c5
==> I[3]=102b4d5
==> I[4]=153b4c5
==> I[5]=6a2b4d5
==> I[6]=9a2b4c5
==> I[7]=39a2c5d5
==> I[8]=51b4c5d5
==> I[9]=3a2b4c5d5
I=intersectZ(I,I6); I;
==> I[1]=1326a2d5
==> I[2]=1989a2c5
==> I[3]=102b4d5
==> I[4]=153b4c5
==> I[5]=663a2c5d5
==> I[6]=51b4c5d5
==> I[7]=78a2d15
==> I[8]=117a2c15
==> I[9]=78a15d5
==> I[10]=117a15c5
==> I[11]=6a2b4d15
==> I[12]=9a2b4c15
==> I[13]=39a2c5d15
==> I[14]=39a2c15d5
==> I[15]=6a2b15d5
==> I[16]=9a2b15c5
==> I[17]=6a15b4d5
==> I[18]=9a15b4c5
==> I[19]=39a15c5d5
==> I[20]=3a2b4c5d15
==> I[21]=3a2b4c15d5
==> I[22]=3a2b15c5d5
==> I[23]=3a15b4c5d5
|
|