Home Online Manual
Top
Back: sagbiSPoly
Forward: sagbi
FastBack: reesclos_lib
FastForward: sing4ti2_lib
Up: sagbi_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.4.25.2 sagbiReduce

Procedure from library sagbi.lib (see sagbi_lib).

Usage:
sagbiReduce(I, A[, tr, mt]); I, A ideals, tr, mt optional integers

Return:
ideal of remainders of I after SAGBI reduction by A

Assume:
basering is not a qring

Purpose:
 
    The optional argument tr=tailred determines whether tail reduction will be performed.
     - If (tailred=0), no tail reduction is done.
     - If (tailred<>0), tail reduction is done.
     The other optional argument meth determines which method is
         used for Groebner basis computations.
         - If mt=0 (default), the procedure std is used.
         - If mt=1, the procedure slimgb is used.

Example:
 
LIB "sagbi.lib";
ring r=0,(x,y,z),dp;
ideal A=x2,2*x2y+y,x3y2;
poly p1=x^5+x2y+y;
poly p2=x^16+x^12*y^5+6*x^8*y^4+x^6+y^4+3;
ideal P=p1,p2;
//---------------------------------------------
//SAGBI reduction of polynomial p1 by algebra A.
//Default call, that is, no tail-reduction is done.
sagbiReduce(p1,A);
==> x5+x2y+y
//---------------------------------------------
//SAGBI reduction of set of polynomials P by algebra A,
//now tail-reduction is done.
sagbiReduce(P,A,1);
==> _[1]=x5+1/2y
==> _[2]=x6y5-8y4