|
D.5.2.17 Gamma
Procedure from library resbinomial.lib (see resbinomial_lib).
- Usage:
- Gamma(L,c,n); L list, c number, n integer
- Compute:
- The Gamma function, resolution function corresponding to the monomial case
- Return:
- lists of maximum exponents in L, value of Gamma function, center of blow up
Example:
| LIB "resbinomial.lib";
ring r = 0,(x(1..5)),dp;
ideal J=x(1)^2*x(2)*x(3)^5*x(4)^2*x(5)^3;
list L=data(J,1,5);
list G=Gamma(L[2][1][1],9,5); // critical value c=9
G[1]; // maximum exponents in the ideal
==> [1]:
==> 5
==> [2]:
==> 3
==> [3]:
==> 2
G[2]; // maximal value of Gamma function
==> [1]:
==> -3
==> [2]:
==> 10/9
==> [3]:
==> 3,5,4
G[3]; // center given by Gamma
==> [1]:
==> 3
==> [2]:
==> 5
==> [3]:
==> 4
|
|