Home Online Manual
Top
Back: sheafCohBGG2
Forward: dimH
FastBack: reszeta_lib
FastForward: JMBTest_lib
Up: sheafcoh_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.5.7.6 sheafCoh

Procedure from library sheafcoh.lib (see sheafcoh_lib).

Usage:
sheafCoh(M,l,h); M module, l,h int

Assume:
M is graded, and it comes assigned with an admissible degree vector as an attribute, h>=l. The basering S has n+1 variables.

Return:
intmat, cohomology of twists of the coherent sheaf F on P^n associated to coker(M). The range of twists is determined by l, h.

Display:
The intmat is displayed in a diagram of the following form:
 
                l            l+1                      h
  ----------------------------------------------------------
      n:     h^n(F(l))    h^n(F(l+1))   ......    h^n(F(h))
           ...............................................
      1:     h^1(F(l))    h^1(F(l+1))   ......    h^1(F(h))
      0:     h^0(F(l))    h^0(F(l+1))   ......    h^0(F(h))
  ----------------------------------------------------------
    chi:     chi(F(l))    chi(F(l+1))   ......    chi(F(h))
A '-' in the diagram refers to a zero entry.

Note:
The procedure is based on local duality as described in [Eisenbud: Computing cohomology. In Vasconcelos: Computational methods in commutative algebra and algebraic geometry. Springer (1998)].
By default, the procedure uses mres to compute the Ext modules. If called with the additional parameter "sres", the sres command is used instead.

Example:
 
LIB "sheafcoh.lib";
//
// cohomology of structure sheaf on P^4:
//-------------------------------------------
ring r=0,x(1..5),dp;
module M=0;
def A=sheafCoh(0,-7,2);
==>       -7  -6  -5  -4  -3  -2  -1   0   1   2
==> --------------------------------------------
==>   4:  15   5   1   -   -   -   -   -   -   -
==>   3:   -   -   -   -   -   -   -   -   -   -
==>   2:   -   -   -   -   -   -   -   -   -   -
==>   1:   -   -   -   -   -   -   -   -   -   -
==>   0:   -   -   -   -   -   -   -   1   5  15
==> --------------------------------------------
==> chi:  15   5   1   0   0   0   0   1   5  15
//
// cohomology of cotangential bundle on P^3:
//-------------------------------------------
ring R=0,(x,y,z,u),dp;
resolution T1=mres(maxideal(1),0);
module M=T1[3];
intvec v=2,2,2,2,2,2;
attrib(M,"isHomog",v);
def B=sheafCoh(M,-6,2);
==>       -6  -5  -4  -3  -2  -1   0   1   2
==> ----------------------------------------
==>   3:  70  36  15   4   -   -   -   -   -
==>   2:   -   -   -   -   -   -   -   -   -
==>   1:   -   -   -   -   -   -   1   -   -
==>   0:   -   -   -   -   -   -   -   -   6
==> ----------------------------------------
==> chi: -70 -36 -15  -4   0   0  -1   0   6
See also: dimH; sheafCohBGG.