|
D.6.12.1 ArnoldAction
Procedure from library qhmoduli.lib (see qhmoduli_lib).
- Usage:
- ArnoldAction(f, [Gf, B]); poly f; list Gf, B;
'Gf' is a list of two rings (coming from 'StabEqn')
- Purpose:
- compute the induced action of the stabilizer G of f on T_, where
T_ is given by the upper monomials B of the Milnor algebra of f.
- Assume:
- f is quasihomogeneous
- Return:
- polynomial ring over the same ground field, containing the ideals
'actionid' and 'stabid'.
- 'actionid' is the ideal defining the induced action of Gf on T_
- 'stabid' is the ideal of the stabilizer Gf in the new ring
Example:
| LIB "qhmoduli.lib";
ring B = 0,(x,y,z), ls;
poly f = -z5+y5+x2z+x2y;
def R = ArnoldAction(f);
setring R;
actionid;
==> actionid[1]=-s(2)*t(1)+s(3)*t(1)
==> actionid[2]=-s(2)^2*t(2)+2*s(2)^2*t(3)^2+s(3)^2*t(2)
==> actionid[3]=s(2)*t(3)+s(3)*t(3)
stabid;
==> stabid[1]=s(2)*s(3)
==> stabid[2]=s(1)^2*s(2)+s(1)^2*s(3)-1
==> stabid[3]=s(1)^2*s(3)^2-s(3)
==> stabid[4]=s(1)^2+s(2)^4-s(3)^4
==> stabid[5]=s(1)^4+s(2)^3-s(3)^3
==> stabid[6]=-s(1)^2*s(3)+s(3)^5
|
|