Home Online Manual
Top
Back: CMtype
Forward: semiCMcod2
FastBack: sing_lib
FastForward: spectrum_lib
Up: spcurve_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.6.14.3 matrixT1

Procedure from library spcurve.lib (see spcurve_lib).

Usage:
matrixT1(M,n); M matrix, n integer

Assume:
M is a presentation matrix of an ideal i, CM of codimension 2; consider i as a family of ideals in a ring in the first n variables where the remaining variables are considered as parameters

Return:
list consisting of the k x (k+1) matrix M and a module K_M such that T1=Mat(k,k+1;R)/K_M is the space of first order deformations of i

Example:
 
LIB "spcurve.lib";
ring r=32003,(x(1),x(2),x(3)),ds;
ideal curve=x(1)*x(2),x(1)*x(3),x(2)*x(3);
matrix M=isCMcod2(curve);
matrixT1(M,3);
==> [1]:
==>    _[1,1]=0
==>    _[1,2]=-x(3)
==>    _[2,1]=-x(2)
==>    _[2,2]=x(2)
==>    _[3,1]=x(1)
==>    _[3,2]=0
==> [2]:
==>    _[1]=gen(5)
==>    _[2]=gen(4)-gen(3)
==>    _[3]=-gen(2)
==>    _[4]=x(1)*gen(5)-x(2)*gen(3)
==>    _[5]=x(1)*gen(6)-x(2)*gen(4)
==>    _[6]=x(2)*gen(3)-x(3)*gen(1)
==>    _[7]=x(2)*gen(4)-x(3)*gen(2)
==>    _[8]=-x(3)*gen(2)
==>    _[9]=x(2)*gen(2)-x(2)*gen(1)
==>    _[10]=x(1)*gen(1)
==>    _[11]=-x(3)*gen(4)
==>    _[12]=x(2)*gen(4)-x(2)*gen(3)
==>    _[13]=x(1)*gen(3)
==>    _[14]=-x(3)*gen(6)
==>    _[15]=x(2)*gen(6)-x(2)*gen(5)
==>    _[16]=x(1)*gen(5)