|
D.8.5.2 triMNewton
Procedure from library ntsolve.lib (see ntsolve_lib).
- Usage:
- triMNewton(G,a[,ipar]); G,a= ideals, ipar=list/intvec
- Assume:
- G: g1,..,gn, a triangular system of n equations in n vars, i.e.
gi=gi(var(n-i+1),..,var(n)),
a: ideal of numbers, coordinates of an approximation of a common
zero of G to start with (with a[i] to be substituted in var(i)),
ipar: control integer vector (default: ipar = [100, 10])
| ipar[1]: max. number of iterations
ipar[2]: accuracy (we have as norm |.| absolute value ):
accepts solution sol if |G(sol)| < |G(a)|*(0.1^ipar[2]).
|
- Return:
- an ideal, coordinates of a better approximation of a zero of G
Example:
| LIB "ntsolve.lib";
ring r = (real,30),(z,y,x),(lp);
ideal i = x^2-1,y^2+x4-3,z2-y4+x-1;
ideal a = 2,3,4;
intvec e = 20,10;
ideal l = triMNewton(i,a,e);
l;
==> l[1]=-2.000000000042265738880279143423
==> l[2]=1.41421356237309504880168872421
==> l[3]=1
|
|