|
4.22 coneIn order to use convex objects in Singular, Singular has to be build from sources together with gfanlib, a C++ library for convex geometry by Anders N. Jensen. Please check the readme file for installation instructions. In the finite dimensional real vector space R^n, a convex rational polyhedral cone, in short "cone", is the convex set generated by finitely many half-lines, which in turn are generated by rational, and hence integer, points. It may or may not contain whole subspace of R^n (e.g. entire lines). The biggest subspace contained in a cone is called "lineality space". Modulo its lineality space, each cone is generated by a distinct minimal set of half lines, which are referred to as "rays". Alternatively, a cone can be represented as a set of points satisfying a system homogeneous rational, and hence integer, linear inequalities and equations. These two characterizations of cones are the two main ways of defining cones in Singular (see coneViaPoints, see coneViaInequalities).
|