Home Online Manual
Top
Back: gradedModules_lib
Forward: grtest
FastBack: gitfan_lib
FastForward: hess_lib
Up: gradedModules_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.15.10.1 grobj

Procedure from library gradedModules.lib (see gradedModules_lib).

Usage:
grobj(M, w[, d]), matrix/ideal/module M, intvec w, d

Return:
graded object with matrix presentation M, row weighting w [and total graded degrees d of columns]

Purpose:
create a valid graded object with a given matrix presentation, weighting [and total graded degrees (in case of zero columns)]

Example:
 
LIB "gradedModules.lib";
ring r=32003,(x,y,z),dp;
module A = grobj( module([x+y, x, 0, 0], [0, x+y, y, 0]), intvec(0,0,0,1) );
grview(A);
==>        1   2     
==>      --------    
==>   0 :  1   . |  1
==>   0 :  1   1 |  2
==>   0 :  .   1 |  3
==>   1 :  .   . |  4
==>      ========    
==>        1   1     
module F = grobj( module([x,y,0]), intvec(1,1,5) );
grview(F);
==>        1     
==>      ----    
==>   1 :  1 |  1
==>   1 :  1 |  2
==>   5 :  . |  3
==>      ====    
==>        2     
int d = 666; // zero can have any degree...
module Z = grobj( module([x,0], [0,0,0], [0, y]), intvec(1,2,3), intvec(2, d, 3) );
grview(Z);
==>          1    2    3      
==>       ---------------     
==>    1 :   1    .    . |   1
==>    2 :   .    .    1 |   2
==>    3 :   .    .    . |   3
==>       ===============     
==>          2  666    3      
print(Z);
==> x,0,0,
==> 0,0,y,
==> 0,0,0 
attrib(Z);
==> attr:degHomog, type intvec 
==> attr:isHomog, type intvec 
attrib(Z, "isHomog"); // module weights
==> 1,2,3
attrib(Z, "degHomog"); // total degrees
==> 2,666,3