|
D.15.10.1 grobj
Procedure from library gradedModules.lib (see gradedModules_lib).
- Usage:
- grobj(M, w[, d]), matrix/ideal/module M, intvec w, d
- Return:
- graded object with matrix presentation M, row weighting w [and total graded degrees d of columns]
- Purpose:
- create a valid graded object with a given matrix presentation, weighting [and total graded degrees (in case of zero columns)]
Example:
| LIB "gradedModules.lib";
ring r=32003,(x,y,z),dp;
module A = grobj( module([x+y, x, 0, 0], [0, x+y, y, 0]), intvec(0,0,0,1) );
grview(A);
==> 1 2
==> --------
==> 0 : 1 . | 1
==> 0 : 1 1 | 2
==> 0 : . 1 | 3
==> 1 : . . | 4
==> ========
==> 1 1
module F = grobj( module([x,y,0]), intvec(1,1,5) );
grview(F);
==> 1
==> ----
==> 1 : 1 | 1
==> 1 : 1 | 2
==> 5 : . | 3
==> ====
==> 2
int d = 666; // zero can have any degree...
module Z = grobj( module([x,0], [0,0,0], [0, y]), intvec(1,2,3), intvec(2, d, 3) );
grview(Z);
==> 1 2 3
==> ---------------
==> 1 : 1 . . | 1
==> 2 : . . 1 | 2
==> 3 : . . . | 3
==> ===============
==> 2 666 3
print(Z);
==> x,0,0,
==> 0,0,y,
==> 0,0,0
attrib(Z);
==> attr:degHomog, type intvec
==> attr:isHomog, type intvec
attrib(Z, "isHomog"); // module weights
==> 1,2,3
attrib(Z, "degHomog"); // total degrees
==> 2,666,3
|
|