| ring r=0,(x,y,z),(c,dp);
matrix D[3][3];
D[1,2]=-z; D[1,3]=y; D[2,3]=x;
def R=nc_algebra(1,D); // this algebra is U(so_3)
setring R;
vector s1 = [x2,y3,z];
vector s2 = [xy,1,0];
vector s3 = [0,x2-y2,z];
poly f = -x*y;
module m = s1, s2-s1,f*(s3-s1);
m;
==> m[1]=[x2,y3,z]
==> m[2]=[-x2+xy,-y3+1,-z]
==> m[3]=[x3y-2x2z-xy,xy4-x3y+xy3+2x2z+xy]
// show m in matrix format (columns generate m)
print(m);
==> x2,-x2+xy,x3y-2x2z-xy,
==> y3,-y3+1, xy4-x3y+xy3+2x2z+xy,
==> z, -z, 0
|