Home Online Manual
Top
Back: betti (plural)
Forward: dim (plural)
FastBack: Data types (plural)
FastForward: Mathematical background (plural)
Up: Functions (plural)
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

7.3.2 bracket

Syntax:
bracket ( poly_expression, poly_expression )
Type:
poly
Purpose:
Computes the Lie bracket [p,q]=pq-qp of the first polynomial with the second. Uses special routines, based on the Leibniz rule.
Example:
 
ring r=(0,Q),(x,y,z),Dp;
minpoly=Q^2-Q+1;
matrix C[3][3];  matrix D[3][3];
C[1,2]=Q2;    C[1,3]=1/Q2;  C[2,3]=Q2;
D[1,2]=-Q*z;  D[1,3]=1/Q*y; D[2,3]=-Q*x;
def R=nc_algebra(C,D); setring R; R;
==> //   characteristic : 0
==> //   1 parameter    : Q 
==> //   minpoly        : (Q2-Q+1)
==> //   number of vars : 3
==> //        block   1 : ordering Dp
==> //                  : names    x y z
==> //        block   2 : ordering C
==> //   noncommutative relations:
==> //    yx=(Q-1)*xy+(-Q)*z
==> //    zx=(-Q)*xz+(-Q+1)*y
==> //    zy=(Q-1)*yz+(-Q)*x
// this is a quantum deformation of U(so_3),
// where Q is a 6th root of unity
poly p=Q^4*x2+y2+Q^4*z2+Q*(1-Q^4)*x*y*z;
// p is the central element of the algebra
p=p^3; // any power of a central element is central
poly q=(x+Q*y+Q^2*z)^4;
// take q to be some big noncentral element
size(q); // check how many monomials are in big polynomial q
==> 28
bracket(p,q); // check p*q=q*p
==> 0
// a more common behaviour of the bracket follows:
bracket(x+Q*y+Q^2*z,z);
==> (Q+1)*xz+(Q+1)*yz+(Q-1)*x+(Q-1)*y