| LIB "fpadim.lib";
ring r = 0,(x,y),dp;
def R = makeLetterplaceRing(5); // constructs a Letterplace ring
R;
==> // characteristic : 0
==> // number of vars : 10
==> // block 1 : ordering a
==> // : names x(1) y(1) x(2) y(2) x(3) y(3) x(4) y(4) x(\
5) y(5)
==> // : weights 1 1 1 1 1 1 1 1 \
1 1
==> // block 2 : ordering dp
==> // : names x(1) y(1)
==> // block 3 : ordering dp
==> // : names x(2) y(2)
==> // block 4 : ordering dp
==> // : names x(3) y(3)
==> // block 5 : ordering dp
==> // : names x(4) y(4)
==> // block 6 : ordering dp
==> // : names x(5) y(5)
==> // block 7 : ordering C
setring R; // sets basering to Letterplace ring
//some intmats, which contain monomials in intvec representation as rows
intmat I1 [2][2] = 1,1,2,2; intmat I2 [1][3] = 1,2,1;
intmat J1 [1][2] = 1,1; intmat J2 [2][3] = 2,1,2,1,2,1;
print(I1);
==> 1 1
==> 2 2
print(I2);
==> 1 2 1
print(J1);
==> 1 1
print(J2);
==> 2 1 2
==> 1 2 1
list G = I1,I2;// ideal, which is already a Groebner basis
list I = J1,J2; // ideal, which is already a Groebner basis
ivDHilbertSickle(G,2); // invokes the procedure without a degree bound
==> [1]:
==> 6
==> [2]:
==> 1,2,2,1
==> [3]:
==> [1]:
==> 1,2
==> [2]:
==> 2,1,2
ivDHilbertSickle(I,2,3); // invokes the procedure with degree bound 3
==> [1]:
==> 9
==> [2]:
==> 1,2,3,3
==> [3]:
==> [1]:
==> 1,2,2
==> [2]:
==> 2,1
==> [3]:
==> 2,2,1
==> [4]:
==> 2,2,2
|