|
7.7.7.0. lpDHilbertSickle
Procedure from library fpadim.lib (see fpadim_lib).
- Usage:
- lpDHilbertSickle(G[,degbound,n]); G an ideal, degbound, n optional
integers
- Return:
- list
- Purpose:
- Computing K-dimension, Hilbert series and mistletoes at once
- Assume:
- - basering is a Letterplace ring. G is a Letterplace ideal.
- if you specify a different degree bound degbound,
degbound <= attrib(basering,uptodeg) should hold.
- Note:
- - If L is the list returned, then L[1] is an integer, the K-dimension,
L[2] is an intvec, the Hilbert series and L[3] is an ideal,
the mistletoes
- If degbound is set, there will be a degree bound added. 0 means no
degree bound. Default: attrib(basering,uptodeg).
- n can be set to a different number of variables.
Default: n = attrib(basering, lV).
- If I = L[1] is the intvec returned, then I[k] is the (k-1)-th
coefficient of the Hilbert series.
- If the K-dimension is known to be infinite, a degree bound is needed
Example:
| LIB "fpadim.lib";
ring r = 0,(x,y),dp;
def R = makeLetterplaceRing(5); // constructs a Letterplace ring
setring R; // sets basering to Letterplace ring
ideal G = x(1)*x(2), y(1)*y(2),x(1)*y(2)*x(3); // ideal G contains a
//Groebner basis
lpDHilbertSickle(G,5,2); //invokes procedure with degree bound 5 and 2 variables
==> [1]:
==> 6
==> [2]:
==> 1,2,2,1
==> [3]:
==> _[1]=x(1)*y(2)
==> _[2]=y(1)*x(2)*y(3)
// note that the optional parameters are not necessary, due to the finiteness
// of the K-dimension of the factor algebra
lpDHilbertSickle(G); // procedure with ring parameters
==> [1]:
==> 6
==> [2]:
==> 1,2,2,1
==> [3]:
==> _[1]=x(1)*y(2)
==> _[2]=y(1)*x(2)*y(3)
lpDHilbertSickle(G,0); // procedure without degreebound
==> [1]:
==> 6
==> [2]:
==> 1,2,2,1
==> [3]:
==> _[1]=x(1)*y(2)
==> _[2]=y(1)*x(2)*y(3)
|
|