Home Online Manual
Top
Back: makeQso3
Forward: makeQsl3
FastBack: gkdim_lib
FastForward: ncdecomp_lib
Up: ncalg_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document
7.7.11.0. makeQsl2
Procedure from library ncalg.lib (see ncalg_lib).

Usage:
makeQsl2([n]), n an optional int

Return:
ring

Purpose:
define the U_q(sl_2) as a factor-ring of a ring V_q(sl_2) modulo the ideal Qideal

Note:
the output consists of a ring, presenting V_q(sl_2) together with the ideal called Qideal in this ring
activate this ring with the setring command
in order to create the U_q(sl_2) from the output, execute the command like qring Usl2q = Qideal;
If n is specified, the quantum parameter q will be specialized at the n-th root of unity

Example:
 
LIB "ncalg.lib";
def A = makeQsl2(3);
setring A;
Qideal;
==> Qideal[1]=Ke*Kf-1
qring Usl2q = Qideal;
Usl2q;
==> //   characteristic : 0
==> //   1 parameter    : q 
==> //   minpoly        : (q^2+q+1)
==> //   number of vars : 4
==> //        block   1 : ordering dp
==> //                  : names    E F Ke Kf
==> //        block   2 : ordering C
==> //   noncommutative relations:
==> //    FE=E*F+(2/3*q+1/3)*Ke+(-2/3*q-1/3)*Kf
==> //    KeE=(-q-1)*E*Ke
==> //    KfE=(q)*E*Kf
==> //    KeF=(q)*F*Ke
==> //    KfF=(-q-1)*F*Kf
==> // quotient ring from ideal
==> _[1]=Ke*Kf-1
See also: makeQsl3; makeQso3; makeUsl.