Top
Back: homogeneitySpace
Forward: maximalGroebnerCone
FastBack: SINGULAR libraries
FastForward: polymake_so
Up: gfanlib_so
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.16.1.3 groebnerCone

Syntax:
groebnerCone( poly g, intvec v )
groebnerCone( poly g, bigintmat v )
groebnerCone( ideal I, intvec v )
groebnerCone( ideal I, bigintmat v )
Assume:
I reduced standard basis, v contained in the maximal Groebner cone of the current ordering
Type:
cone
Purpose:
the euklidean closure of all weight vectors with respect to whom the initial form of g or the initial ideal of I coincides with the initial form or the initial ideal with respect to v.
Example:
 
LIB "gfanlib.so";
ring r = 0,(x,y),dp;
poly g = x+y+1;
cone C = groebnerCone(g,intvec(1,1));
rays(C);
==> 1,1
generatorsOfLinealitySpace(C);
==> 

ideal I = x2-y3,x3-y2-x;
I = std(I);
C = groebnerCone(I,intvec(1,1));
rays(C);
==> 3,2,
==> 2,3
generatorsOfLinealitySpace(C);
==> 

Top Back: homogeneitySpace Forward: maximalGroebnerCone FastBack: SINGULAR libraries FastForward: polymake_so Up: gfanlib_so Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 4-0-3, 2016, generated by texi2html.