Top
Back: groebnerCone
Forward: groebnerFan
FastBack: SINGULAR libraries
FastForward: polymake_so
Up: gfanlib_so
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.16.1.4 maximalGroebnerCone

Syntax:
maximalGroebnerCone( poly g )
maximalGroebnerCone( ideal I )
Assume:
I reduced standard basis
Type:
cone
Purpose:
the euklidean closure of all weight vectors with respect to whom the initial form of g equals its leading term or the initial ideal of I equals its leading ideal.
Example:
 
LIB "gfanlib.so";
ring r = 0,(x,y),dp;
poly g = x+y+1;
cone C = maximalGroebnerCone(g);
rays(C);
==> 0,-1,
==> 1, 1
generatorsOfLinealitySpace(C);
==> 

ideal I = x2-y3,x3-y2-x;
I = std(I);
C = maximalGroebnerCone(I);
rays(C);
==> 3,2,
==> 2,3
generatorsOfLinealitySpace(C);
==> 

Top Back: groebnerCone Forward: groebnerFan FastBack: SINGULAR libraries FastForward: polymake_so Up: gfanlib_so Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 4-0-3, 2016, generated by texi2html.