Top
Back: Matrix orderings
Forward: Extra weight vector
FastBack: Representation of mathematical objects
FastForward: Mathematical background
Up: Monomial orderings
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

B.2.7 Product orderings

Let $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_m)$be two ordered sets of variables, $<_1$ a monomial ordering on $K[x]$ and $<_2$ a monomial ordering on $K[y]$. The product ordering (or block ordering) $<\ := (<_1,<_2)$ on $K[x,y]$ is the following:
         $x^a y^b < x^A y^B \Leftrightarrow x^a <_1 x^A $ or ($x^a =
x^A$ and $y^b <_2 y^B$).

Inductively one defines the product ordering of more than two monomial orderings.

In SINGULAR, any of the above global orderings, local orderings or matrix orderings may be combined (in an arbitrary manner and length) to a product ordering. E.g., (lp(3), M(1, 2, 3, 1, 1, 1, 1, 0, 0), ds(4), ws(1,2,3)) defines: lp on the first 3 variables, the matrix ordering M(1, 2, 3, 1, 1, 1, 1, 0, 0) on the next 3 variables, ds on the next 4 variables and ws(1,2,3) on the last 3 variables.


Top Back: Matrix orderings Forward: Extra weight vector FastBack: Representation of mathematical objects FastForward: Mathematical background Up: Monomial orderings Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 4-0-3, 2016, generated by texi2html.