Home Online Manual
Top
Back: resbinomial_lib
Forward: Eresol
FastBack:
FastForward:
Up: resbinomial_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.5.5.1 BINresol

Procedure from library resbinomial.lib (see resbinomial_lib).

Usage:
BINresol(J); J ideal

Return:
E-resolution of singularities of a binomial ideal J in terms of the affine charts, see example

Example:
 
LIB "resbinomial.lib";
ring r = 0,(x(1..2)),dp;
ideal J=x(1)^2-x(2)^3;
list B=BINresol(J);
B[1]; // list of final charts
==> [1]:
==>    //   characteristic : 0
==> //   number of vars : 2
==> //        block   1 : ordering dp
==> //                  : names    y(1) y(2)
==> //        block   2 : ordering C
==> [2]:
==>    //   characteristic : 0
==> //   number of vars : 2
==> //        block   1 : ordering dp
==> //                  : names    y(1) y(2)
==> //        block   2 : ordering C
==> [3]:
==>    //   characteristic : 0
==> //   number of vars : 2
==> //        block   1 : ordering dp
==> //                  : names    y(1) x(2)
==> //        block   2 : ordering C
==> [4]:
==>    //   characteristic : 0
==> //   number of vars : 2
==> //        block   1 : ordering dp
==> //                  : names    x(1) y(2)
==> //        block   2 : ordering C
B[2]; // list of all charts
==> [1]:
==>    //   characteristic : 0
==> //   number of vars : 2
==> //        block   1 : ordering dp
==> //                  : names    x(1) x(2)
==> //        block   2 : ordering C
==> [2]:
==>    //   characteristic : 0
==> //   number of vars : 2
==> //        block   1 : ordering dp
==> //                  : names    y(1) y(2)
==> //        block   2 : ordering C
==> [3]:
==>    //   characteristic : 0
==> //   number of vars : 2
==> //        block   1 : ordering dp
==> //                  : names    x(1) x(2)
==> //        block   2 : ordering C
==> [4]:
==>    //   characteristic : 0
==> //   number of vars : 2
==> //        block   1 : ordering dp
==> //                  : names    y(1) y(2)
==> //        block   2 : ordering C
==> [5]:
==>    //   characteristic : 0
==> //   number of vars : 2
==> //        block   1 : ordering dp
==> //                  : names    x(1) x(2)
==> //        block   2 : ordering C
==> [6]:
==>    //   characteristic : 0
==> //   number of vars : 2
==> //        block   1 : ordering dp
==> //                  : names    y(1) x(2)
==> //        block   2 : ordering C
==> [7]:
==>    //   characteristic : 0
==> //   number of vars : 2
==> //        block   1 : ordering dp
==> //                  : names    x(1) y(2)
==> //        block   2 : ordering C
ring r = 2,(x(1..3)),dp;
==> // ** redefining r (ring r = 2,(x(1..3)),dp;)
ideal J=x(1)^2-x(2)^2*x(3)^2;
list B=BINresol(J);
==> // ** redefining B (list B=BINresol(J);)
B[2]; // list of all charts
==> [1]:
==>    //   characteristic : 2
==> //   number of vars : 3
==> //        block   1 : ordering dp
==> //                  : names    x(1) x(2) x(3)
==> //        block   2 : ordering C
==> [2]:
==>    //   characteristic : 2
==> //   number of vars : 3
==> //        block   1 : ordering dp
==> //                  : names    y(1) y(2) y(3)
==> //        block   2 : ordering C
==> [3]:
==>    //   characteristic : 2
==> //   number of vars : 3
==> //        block   1 : ordering dp
==> //                  : names    x(1) x(2) x(3)
==> //        block   2 : ordering C
==> [4]:
==>    //   characteristic : 2
==> //   number of vars : 3
==> //        block   1 : ordering dp
==> //                  : names    x(1) x(2) x(3)
==> //        block   2 : ordering C
==> [5]:
==>    //   characteristic : 2
==> //   number of vars : 3
==> //        block   1 : ordering dp
==> //                  : names    x(1) y(2) y(3)
==> //        block   2 : ordering C
==> [6]:
==>    //   characteristic : 2
==> //   number of vars : 3
==> //        block   1 : ordering dp
==> //                  : names    x(1) x(2) x(3)
==> //        block   2 : ordering C
==> [7]:
==>    //   characteristic : 2
==> //   number of vars : 3
==> //        block   1 : ordering dp
==> //                  : names    x(1) y(2) y(3)
==> //        block   2 : ordering C
==> [8]:
==>    //   characteristic : 2
==> //   number of vars : 3
==> //        block   1 : ordering dp
==> //                  : names    x(1) x(2) x(3)
==> //        block   2 : ordering C
==> [9]:
==>    //   characteristic : 2
==> //   number of vars : 3
==> //        block   1 : ordering dp
==> //                  : names    x(1) y(2) x(3)
==> //        block   2 : ordering C
==> [10]:
==>    //   characteristic : 2
==> //   number of vars : 3
==> //        block   1 : ordering dp
==> //                  : names    y(1) x(2) x(3)
==> //        block   2 : ordering C
==> [11]:
==>    //   characteristic : 2
==> //   number of vars : 3
==> //        block   1 : ordering dp
==> //                  : names    x(1) x(2) y(3)
==> //        block   2 : ordering C
==> [12]:
==>    //   characteristic : 2
==> //   number of vars : 3
==> //        block   1 : ordering dp
==> //                  : names    y(1) x(2) x(3)
==> //        block   2 : ordering C