Home Online Manual
Top
Back: constructlastblwup
Forward: salida
FastBack:
FastForward:
Up: resbinomial_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.5.5.24 genoutput

Procedure from library resbinomial.lib (see resbinomial_lib).

Usage:
genoutput(chart,mobile,nchart,nsons,n,q,p);
chart, mobile, nsons lists, nchart, n,q, p integers

Return:
two lists, the first one gives the rings corresponding to the final charts, the second one is the list of all rings corresponding to the affine charts of the resolution process

Example:
 
LIB "resbinomial.lib";
ring r = 0,(x(1..2)),dp;
ideal J=x(1)^3-x(1)*x(2)^3;
list L=Eresol(J);         // 8 charts, rational exponents
list B=genoutput(L[1],L[8],L[4],L[6],2,2,0); // generates the output
presentTree(B);
==>                         
==> /////////////////////////// Final Chart 1 /////////////////////////
==> ======================== History of this chart ======================
==>                   
==> Blow Up 1 :
==>      Center determined in L[2][1],
==>      Passing to chart  1  in resulting blow up.
==>                  
==> ======================== Data of this chart ========================
==>                        
==> ==== Ambient Space: 
==> _[1]=0
==>       
==> ==== Ideal of Variety: 
==> _[1]=-y(1)*y(2)^3+1
==>       
==> ==== Exceptional Divisors: 
==> [1]:
==>    _[1]=y(1)
==>    
==> ==== Images of variables of original ring:
==> _[1]=y(1)
==> _[2]=y(1)*y(2)
==>    
==> pause>                        
==> /////////////////////////// Final Chart 2 /////////////////////////
==> ======================== History of this chart ======================
==>                   
==> Blow Up 1 :
==>      Center determined in L[2][1],
==>      Passing to chart  2  in resulting blow up.
==>                   
==> Blow Up 2 :
==>      Center determined in L[2][3],
==>      Passing to chart  1  in resulting blow up.
==>                   
==> Blow Up 3 :
==>      Center determined in L[2][4],
==>      Passing to chart  1  in resulting blow up.
==>                  
==> ======================== Data of this chart ========================
==>                        
==> ==== Ambient Space: 
==> _[1]=0
==>       
==> ==== Ideal of Variety: 
==> _[1]=y(1)-1
==>       
==> ==== Exceptional Divisors: 
==> [1]:
==>    _[1]=1
==> [2]:
==>    _[1]=y(1)
==> [3]:
==>    _[1]=x(2)
==>    
==> ==== Images of variables of original ring:
==> _[1]=y(1)^2*x(2)^3
==> _[2]=y(1)*x(2)^2
==>    
==> pause>                        
==> /////////////////////////// Final Chart 3 /////////////////////////
==> ======================== History of this chart ======================
==>                   
==> Blow Up 1 :
==>      Center determined in L[2][1],
==>      Passing to chart  2  in resulting blow up.
==>                   
==> Blow Up 2 :
==>      Center determined in L[2][3],
==>      Passing to chart  1  in resulting blow up.
==>                   
==> Blow Up 3 :
==>      Center determined in L[2][4],
==>      Passing to chart  2  in resulting blow up.
==>                  
==> ======================== Data of this chart ========================
==>                        
==> ==== Ambient Space: 
==> _[1]=0
==>       
==> ==== Ideal of Variety: 
==> _[1]=-y(2)+1
==>       
==> ==== Exceptional Divisors: 
==> [1]:
==>    _[1]=y(2)
==> [2]:
==>    _[1]=1
==> [3]:
==>    _[1]=x(1)
==>    
==> ==== Images of variables of original ring:
==> _[1]=x(1)^3*y(2)
==> _[2]=x(1)^2*y(2)
==>    
==> pause>                        
==> /////////////////////////// Final Chart 4 /////////////////////////
==> ======================== History of this chart ======================
==>                   
==> Blow Up 1 :
==>      Center determined in L[2][1],
==>      Passing to chart  2  in resulting blow up.
==>                   
==> Blow Up 2 :
==>      Center determined in L[2][3],
==>      Passing to chart  2  in resulting blow up.
==>                   
==> Blow Up 3 :
==>      Center determined in L[2][5],
==>      Passing to chart  1  in resulting blow up.
==>                  
==> ======================== Data of this chart ========================
==>                        
==> ==== Ambient Space: 
==> _[1]=0
==>       
==> ==== Ideal of Variety: 
==> _[1]=y(1)^2*y(2)-1
==>       
==> ==== Exceptional Divisors: 
==> [1]:
==>    _[1]=1
==> [2]:
==>    _[1]=y(2)
==> [3]:
==>    _[1]=y(1)
==>    
==> ==== Images of variables of original ring:
==> _[1]=y(1)*y(2)^2
==> _[2]=y(2)
==>    
==> pause>///////////////////////////////////////////////////////////////////\
   /
==> For identification of exceptional divisors please use the tools
==> provided by reszeta.lib, e.g. collectDiv.
==> For viewing an illustration of the tree of charts please use the
==> procedure ResTree from resgraph.lib.
==> ////////////////////////////////////////////////////////////////////
list iden0=collectDiv(B);
ResTree(B,iden0[1]);        // generates the resolution tree
==> sh: dot: Kommando nicht gefunden.
==> sh: display: Kommando nicht gefunden.
==> Currently showing graphics in separate window
==> Press <Return> to continue
==> pause>./examples/genoutput.sing   9> // Use presentTree(B); to see the fi\
   nal charts
// To see the tree type in another shell
//    dot -Tjpg ResTree.dot -o ResTree.jpg
//   /usr/bin/X11/xv ResTree.jpg
==> . fgets() failed with errno 9