Home Online Manual
Top
Back: triangL
Forward: triangM
FastBack:
FastForward:
Up: triang_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.8.4.2 triangLfak

Procedure from library triang.lib (see triang_lib).

Usage:
triangLfak(G); G=ideal

Assume:
G is the reduced lexicographical Groebner basis of the zero-dimensional ideal (G), sorted by increasing leading terms.

Return:
a list of finitely many triangular systems, such that the union of their varieties equals the variety of (G).

Note:
Algorithm of Lazard with factorization (see: Lazard, D.: Solving zero-dimensional algebraic systems, J. Symb. Comp. 13, 117 - 132, 1992).

Remark:
each polynomial of the triangular systems is factorized.

Example:
 
LIB "triang.lib";
ring rC5 = 0,(e,d,c,b,a),lp;
triangLfak(stdfglm(cyclic(5)));
==> [1]:
==>    _[1]=a-1
==>    _[2]=b-1
==>    _[3]=c-1
==>    _[4]=d2+3d+1
==>    _[5]=e+d+3
==> [2]:
==>    _[1]=a-1
==>    _[2]=b-1
==>    _[3]=c2+3c+1
==>    _[4]=d+c+3
==>    _[5]=e-1
==> [3]:
==>    _[1]=a-1
==>    _[2]=b4+b3+b2+b+1
==>    _[3]=-c+b2
==>    _[4]=-d+b3
==>    _[5]=e+b3+b2+b+1
==> [4]:
==>    _[1]=a-1
==>    _[2]=b2+3b+1
==>    _[3]=c+b+3
==>    _[4]=d-1
==>    _[5]=e-1
==> [5]:
==>    _[1]=a4+a3+a2+a+1
==>    _[2]=b-1
==>    _[3]=c+a3+a2+a+1
==>    _[4]=-d+a3
==>    _[5]=-e+a2
==> [6]:
==>    _[1]=a4+a3+a2+a+1
==>    _[2]=b-a
==>    _[3]=c-a
==>    _[4]=d2+3da+a2
==>    _[5]=e+d+3a
==> [7]:
==>    _[1]=a4+a3+a2+a+1
==>    _[2]=b-a
==>    _[3]=c2+3ca+a2
==>    _[4]=d+c+3a
==>    _[5]=e-a
==> [8]:
==>    _[1]=a4+a3+a2+a+1
==>    _[2]=b3+b2a+b2+ba2+ba+b+a3+a2+a+1
==>    _[3]=c+b2a3+b2a2+b2a+b2
==>    _[4]=-d+b2a2+b2a+b2+ba2+ba+a2
==>    _[5]=-e+b2a3-ba2-ba-b-a2-a
==> [9]:
==>    _[1]=a4+a3+a2+a+1
==>    _[2]=b2+3ba+a2
==>    _[3]=c+b+3a
==>    _[4]=d-a
==>    _[5]=e-a
==> [10]:
==>    _[1]=a4+a3+6a2-4a+1
==>    _[2]=-11b2+6ba3+10ba2+39ba+2b+16a3+23a2+104a-24
==>    _[3]=11c+3a3+5a2+25a+1
==>    _[4]=11d+3a3+5a2+25a+1
==>    _[5]=-11e-11b+6a3+10a2+39a+2
==> [11]:
==>    _[1]=a4-4a3+6a2+a+1
==>    _[2]=-11b2+6ba3-26ba2+41ba-4b-8a3+31a2-40a-24
==>    _[3]=11c+3a3-13a2+26a-2
==>    _[4]=11d+3a3-13a2+26a-2
==>    _[5]=-11e-11b+6a3-26a2+41a-4
==> [12]:
==>    _[1]=a2+3a+1
==>    _[2]=b-1
==>    _[3]=c-1
==>    _[4]=d-1
==>    _[5]=e+a+3
==> [13]:
==>    _[1]=a2+3a+1
==>    _[2]=b+a+3
==>    _[3]=c-1
==>    _[4]=d-1
==>    _[5]=e-1