|
D.13.2.19 ehrhartPolynomialCoeff
Procedure from library polymake.lib (see polymake_lib).
- Usage:
- ehrhartPolynomialCoeff(p); p polytope
- Assume:
- isBounded(p)==1
- Return:
- intvec, all lattice points on the relative boundary of p
Example:
| LIB "polymake.lib";
==> Welcome to polymake version
==> Copyright (c) 1997-2015
==> Ewgenij Gawrilow, Michael Joswig (TU Darmstadt)
==> http://www.polymake.org
intmat M[6][4]=
1,1,1,2,
1,-1,-1,-2,
1,1,0,0,
1,-1,0,0,
1,0,1,0,
1,0,-1,0;
polytope p = polytopeViaPoints(M);
ehrhartPolynomialCoeff(p);
==> polymake: used package cdd
==> cddlib
==> Implementation of the double description method of Motzkin et al.
==> Copyright by Komei Fukuda.
==> http://www.ifor.math.ethz.ch/~fukuda/cdd_home/cdd.html
==>
==> polymake: used package ppl
==> The Parma Polyhedra Library (PPL): A C++ library for convex polyhedra
==> and other numerical abstractions.
==> http://www.cs.unipr.it/ppl/
==>
==> polymake: used package latte
==> LattE (Lattice point Enumeration) is a computer software dedicated to t\
he
==> problems of counting lattice points and integration inside convex polyt\
opes.
==> Copyright by Matthias Koeppe, Jesus A. De Loera and others.
==> http://www.math.ucdavis.edu/~latte/
==>
==> 1,1,2,2
|
|