Home Online Manual
Top
Back: isBounded
Forward: isCompressed
FastBack:
FastForward:
Up: polymake_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.13.2.31 isCanonical

Procedure from library polymake.lib (see polymake_lib).

Usage:
isCanonical(p); p polytope

Return:
1, if p has exactly one interior lattice point; 0 otherwise

Example:
 
LIB "polymake.lib";
==> Welcome to polymake version
==> Copyright (c) 1997-2015
==> Ewgenij Gawrilow, Michael Joswig (TU Darmstadt)
==> http://www.polymake.org
intmat M[6][4]=
1,1,1,2,
1,-1,-1,-2,
1,1,0,0,
1,-1,0,0,
1,0,1,0,
1,0,-1,0;
polytope p = polytopeViaPoints(M);
isCanonical(p);
==> polymake: used package cdd
==>   cddlib
==>   Implementation of the double description method of Motzkin et al.
==>   Copyright by Komei Fukuda.
==>   http://www.ifor.math.ethz.ch/~fukuda/cdd_home/cdd.html
==> 
==> polymake: used package ppl
==>   The Parma Polyhedra Library (PPL): A C++ library for convex polyhedra
==>   and other numerical abstractions.
==>   http://www.cs.unipr.it/ppl/
==> 
==> polymake: used package latte
==>   LattE (Lattice point Enumeration) is a computer software dedicated to t\
   he 
==>   problems of counting lattice points and integration inside convex polyt\
   opes.
==>   Copyright by Matthias Koeppe, Jesus A. De Loera and others.
==>   http://www.math.ucdavis.edu/~latte/
==> 
==> 1
isReflexive(p);
==> 0
intmat N[3][3]=
1,2,0,
1,0,2,
1,-2,-2;
polytope q = polytopeViaPoints(N);
isCanonical(q);
==> 0