Home Online Manual
Top
Back: latticeDegree
Forward: latticeVolume
FastBack:
FastForward:
Up: polymake_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.13.2.42 latticePoints

Procedure from library polymake.lib (see polymake_lib).

Usage:
latticePoints(p); p polytope

Assume:
isBounded(p)==1

Return:
intmat, all lattice points in p

Example:
 
LIB "polymake.lib";
==> Welcome to polymake version
==> Copyright (c) 1997-2015
==> Ewgenij Gawrilow, Michael Joswig (TU Darmstadt)
==> http://www.polymake.org
intmat M[3][3]=
1,2,-1,
1,-1,2,
1,-1,-1;
polytope p = polytopeViaPoints(M);
latticePoints(p);
==> polymake: used package cdd
==>   cddlib
==>   Implementation of the double description method of Motzkin et al.
==>   Copyright by Komei Fukuda.
==>   http://www.ifor.math.ethz.ch/~fukuda/cdd_home/cdd.html
==> 
==> polymake: used package ppl
==>   The Parma Polyhedra Library (PPL): A C++ library for convex polyhedra
==>   and other numerical abstractions.
==>   http://www.cs.unipr.it/ppl/
==> 
==> 1,-1,-1,
==> 1,-1,0,
==> 1,-1,1,
==> 1,-1,2,
==> 1,0,-1,
==> 1,0,0,
==> 1,0,1,
==> 1,1,-1,
==> 1,1,0,
==> 1,2,-1 
intmat N[2][3]=
1,2,0,
1,0,2;
polytope q = polytopeViaPoints(N);
latticePoints(q);
==> 1,0,2,
==> 1,1,1,
==> 1,2,0