|
D.13.4.28 solveTInitialFormPar
Procedure from library tropical.lib (see tropical_lib).
- Usage:
- solveTInitialFormPar(i); i ideal
- Assume:
- i is a zero-dimensional ideal in Q(t)[x_1,...,x_n] generated
by the (1,w)-homogeneous elements for some integer vector w
- i.e. by the (1,w)-initialforms of polynomials
- Return:
- none
- Note:
- the procedure just displays complex approximations
of the solution set of i
Example:
| LIB "tropical.lib";
==> Welcome to polymake version
==> Copyright (c) 1997-2015
==> Ewgenij Gawrilow, Michael Joswig (TU Darmstadt)
==> http://www.polymake.org
ring r=(0,t),(x,y),dp;
ideal i=t2x2+y2,x-t2;
solveTInitialFormPar(i);
==> [1]:
==> [1]:
==> 1
==> [2]:
==> -i
==> [2]:
==> [1]:
==> 1
==> [2]:
==> i
==> [1]:
==> // characteristic : 0 (complex:8 digits, additional 8 digits)
==> // 1 parameter : i
==> // minpoly : (i^2+1)
==> // number of vars : 2
==> // block 1 : ordering lp
==> // : names x y
==> // block 2 : ordering C
|
|