|
D.15.2.18 chProd
Procedure from library chern.lib (see chern_lib).
- Usage:
- chProd(r, c, R, C [, N]); r, R polynomials (integers);
c, C lists of polynomials, N integer
- Return:
- list of polynomials
- Purpose:
- computes the list of Chern classes of the product of two vector bundles
in terms of their ranks and Chern clases [up to degree N]
- Note:
Example:
| LIB "chern.lib";
ring H = 0, ( r, R, c(1..3), C(1..2) ), dp;
list l=c(1..3);
list L=C(1..2);
// the Chern classes of the tensor product of a vector bundle E of rank 3
// with Chern classes c(1), c(2), c(3)
// and a vector bundle F of rank 2 with Chern classes C(1) and C(2):
print( chProd(3, l, 2, L) );
==> [1]:
==> 2*c(1)+3*C(1)
==> [2]:
==> c(1)^2+5*c(1)*C(1)+3*C(1)^2+2*c(2)+3*C(2)
==> [3]:
==> 2*c(1)^2*C(1)+4*c(1)*C(1)^2+C(1)^3+2*c(1)*c(2)+4*c(2)*C(1)+4*c(1)*C(2)\
+6*C(1)*C(2)+2*c(3)
==> [4]:
==> c(1)^2*C(1)^2+c(1)*C(1)^3+3*c(1)*c(2)*C(1)+3*c(2)*C(1)^2+2*c(1)^2*C(2)\
+6*c(1)*C(1)*C(2)+3*C(1)^2*C(2)+c(2)^2+2*c(1)*c(3)+3*c(3)*C(1)+3*C(2)^2
==> [5]:
==> c(1)*c(2)*C(1)^2+c(2)*C(1)^3+2*c(1)^2*C(1)*C(2)+2*c(1)*C(1)^2*C(2)+c(2\
)^2*C(1)+2*c(1)*c(3)*C(1)+3*c(3)*C(1)^2+2*c(1)*c(2)*C(2)+2*c(1)*C(2)^2+3*\
C(1)*C(2)^2+2*c(2)*c(3)-6*c(3)*C(2)
==> [6]:
==> c(1)*c(3)*C(1)^2+c(3)*C(1)^3+c(1)*c(2)*C(1)*C(2)+c(2)*C(1)^2*C(2)+c(1)\
^2*C(2)^2+c(1)*C(1)*C(2)^2+c(2)*c(3)*C(1)+c(2)^2*C(2)-2*c(1)*c(3)*C(2)-3*\
c(3)*C(1)*C(2)-2*c(2)*C(2)^2+C(2)^3+c(3)^2
// the first two Chern classes of the tensor product
// of a vector bundle E of rank r with Chern classes c(1) and c(2)
// and a vector bundle G of rank R with Chern classes C(1) and C(2)
// this gives the Chern classes of a tensor product on a complex surface
l=c(1..2);
L=C(1..2);
print( chProd(r, l, R, L, 2 ) );
==> [1]:
==> R*c(1)+r*C(1)
==> [2]:
==> 1/2*R^2*c(1)^2+r*R*c(1)*C(1)+1/2*r^2*C(1)^2-1/2*R*c(1)^2-1/2*r*C(1)^2+\
R*c(2)-c(1)*C(1)+r*C(2)
|
|