|
7.7.13.0. facWeyl
Procedure from library ncfactor.lib (see ncfactor_lib).
- Usage:
- facWeyl(h); h a polynomial in the nth Weyl algebra
- Return:
- list
- Purpose:
- compute all factorizations of a polynomial in the first Weyl algebra
- Theory:
- Implements the new algorithm by A. Heinle and V. Levandovskyy, see the thesis of A. Heinle
- Assume:
- basering is the nth Weyl algebra, where n in NN.
- Note:
- Every entry of the output list is a list with factors for one possible factorization.
The first factor is always a constant (1, if no nontrivial constant could be excluded).
Example:
| LIB "ncfactor.lib";
ring R = 0,(x1,x2,d1,d2),dp;
matrix C[4][4] = 1,1,1,1,
1,1,1,1,
1,1,1,1,
1,1,1,1;
matrix D[4][4] = 0,0,1,0,
0,0,0,1,
-1,0,0,0,
0,-1,0,0;
def r = nc_algebra(C,D);
setring(r);
poly h = (d1+1)^2*(d1 + x1*d2);
facWeyl(h);
==> [1]:
==> [1]:
==> 1
==> [2]:
==> d1+1
==> [3]:
==> d1+1
==> [4]:
==> x1*d2+d1
==> [2]:
==> [1]:
==> 1
==> [2]:
==> x1*d1*d2+d1^2+x1*d2+d1+2*d2
==> [3]:
==> d1+1
| See also:
facFirstShift;
facFirstWeyl;
facSubWeyl;
testNCfac.
|