Home Online Manual
Top
Back: T1 and T2
Forward: Invariants of plane curve singularities
FastBack: Commutative Algebra
FastForward: Invariant Theory
Up: Singularity Theory
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

A.4.5 Deformations

  • The libraries sing.lib, respextively deform.lib, contain procedures to compute total and base space of the miniversal (= semiuniversal) deformation of an isolated complete intersection singularity, respectively of an arbitrary isolated singularity.
  • The procedure deform in sing.lib returns a matrix whose columns $h_1,\ldots,h_r$represent all 1st order deformations. More precisely, if $I \subset R$ is the ideal generated by $f_1,...,f_s$, then any infinitesimal deformation of $R/I$ over $K[\varepsilon]/(\varepsilon^2)$ is given by $f+\varepsilon g$, where $f=(f_1,...,f_s)$, and where $g$ is a $K$-linear combination of the $h_i$.
  • The procedure versal in deform.lib computes a formal miniversal deformation up to a certain order which can be prescribed by the user. For a complete intersection the 1st order part is already miniversal.
  • The procedure versal extends the basering to a new ring with additional deformation parameters which contains the equations for the miniversal base space and the miniversal total space.
  • There are default names for the objects created, but the user may also choose their own names.
  • If the user sets printlevel=2; before running versal, some intermediate results are shown. This is useful since versal is already complicated and might run for some time on more complicated examples. (type help versal;)

We compute for the same examples as in the section T1 and T2 the miniversal deformations:

 
  LIB "deform.lib";
  ring R=32003,(x,y,z),ds;
  //----------------------------------------------------
  // hypersurface case (from series T[p,q,r]):
  int p,q,r = 3,3,4;
  poly f = x^p+y^q+z^r+xyz;
  print(deform(f));
==> z3,z2,yz,xz,z,y,x,1
  // the miniversal deformation of f=0 is the projection from the
  // miniversal total space to the miniversal base space:
  // { (A,B,C,D,E,F,G,H,x,y,z) | x3+y3+xyz+z4+A+Bx+Cxz+Dy+Eyz+Fz+Gz2+Hz3 =0 }
  //  --> { (A,B,C,D,E,F,G,H) }
  //----------------------------------------------------
  // complete intersection case (from series P[k,l]):
  int k,l =3,2;
  ideal j=xy,x^k+y^l+z2;
  print(deform(j));
==> 0,0, 0,0,z,1,
==> y,x2,x,1,0,0 
  def L=versal(j);            // using default names
==> // smooth base space
==> // ready: T_1 and T_2
==> 
==> 
==> // 'versal' returned a list, say L, of four rings. In L[1] are stored:
==> //   as matrix Fs: Equations of total space of the miniversal deformation\
   ,
==> //   as matrix Js: Equations of miniversal base space,
==> //   as matrix Rs: syzygies of Fs mod Js.
==> // To access these data, type
==>      def Px=L[1]; setring Px; print(Fs); print(Js); print(Rs);
==> 
==> // L[2] = L[1]/Fo extending Qo=Po/Fo,
==> // L[3] = the embedding ring of the versal base space,
==> // L[4] = L[1]/Js extending L[3]/Js.
==> 
  def Px=L[1]; setring Px;
  show(Px);                   // show is a procedure from inout.lib
==> // ring: (ZZ/32003),(A,B,C,D,E,F,x,y,z),(ds(6),ds(3),C);
==> // minpoly = 0
==> // objects belonging to this ring:
==> // Rs                             [0]  matrix 2 x 1
==> // Fs                             [0]  matrix 1 x 2
==> // Js                             [0]  matrix 1 x 0
  listvar(matrix);
==> // Rs                             [0]  matrix 2 x 1
==> // Fs                             [0]  matrix 1 x 2
==> // Js                             [0]  matrix 1 x 0
  // ___ Equations of miniversal base space ___:
  Js;
==> 
  // ___ Equations of miniversal total space ___:
  Fs;
==> Fs[1,1]=xy+Ez+F
==> Fs[1,2]=y2+z2+x3+Ay+Bx2+Cx+D
  // the miniversal deformation of V(j) is the projection from the
  // miniversal total space to the miniversal base space:
  // { (A,B,C,D,E,F,x,y,z) | xy+F+Ez=0, y2+z2+x3+D+Cx+Bx2+Ay=0 }
  //  --> { (A,B,C,D,E,F) }
  //----------------------------------------------------
  // general case (cone over rational normal curve of degree 4):
  kill L;
  ring r1=0,(x,y,z,u,v),ds;
  matrix m[2][4]=x,y,z,u,y,z,u,v;
  ideal i=minor(m,2);                 // 2x2 minors of matrix m
  int time=timer;
  // Call parameters of the miniversal base A(1),A(2),...:
  def L=versal(i,0,"","A(");
==> // ready: T_1 and T_2
==> // start computation in degree 2.
==> // ** J is no standard basis
==> 
==> 
==> // 'versal' returned a list, say L, of four rings. In L[1] are stored:
==> //   as matrix Fs: Equations of total space of the miniversal deformation\
   ,
==> //   as matrix Js: Equations of miniversal base space,
==> //   as matrix Rs: syzygies of Fs mod Js.
==> // To access these data, type
==>      def Px=L[1]; setring Px; print(Fs); print(Js); print(Rs);
==> 
==> // L[2] = L[1]/Fo extending Qo=Po/Fo,
==> // L[3] = the embedding ring of the versal base space,
==> // L[4] = L[1]/Js extending L[3]/Js.
==> 
  "// used time:",timer-time,"sec";   // time of last command
==> // used time: 0 sec
  def Def_rPx=L[1]; setring Def_rPx;
  Fs;
==> Fs[1,1]=-u^2+z*v+A(2)*u+A(4)*v
==> Fs[1,2]=-z*u+y*v-A(1)*u+A(4)*u
==> Fs[1,3]=-y*u+x*v+A(3)*u+A(4)*z
==> Fs[1,4]=z^2-y*u+A(1)*z+A(2)*y
==> Fs[1,5]=y*z-x*u+A(2)*x-A(3)*z
==> Fs[1,6]=-y^2+x*z+A(1)*x+A(3)*y
  Js;
==> Js[1,1]=A(2)*A(4)
==> Js[1,2]=A(1)*A(4)-A(4)^2
==> Js[1,3]=-A(3)*A(4)
  // the miniversal deformation of V(i) is the projection from the
  // miniversal total space to the miniversal base space:
  // { (A(1..4),x,y,z,u,v) |
  //         -u^2+x*v+A(2)*u+A(4)*v=0, -z*u+y*v-A(1)*u+A(3)*u=0,
  //         -y*u+x*v+A(3)*u+A(4)*z=0,  z^2-y*u+A(1)*z+A(2)*y=0,
  //          y*z-x*u+A(2)*x-A(3)*z=0, -y^2+x*z+A(1)*x+A(3)*y=0 }
  //  --> { A(1..4) |
  //          A(2)*A(4) = -A(3)*A(4) = -A(1)*A(4)+A(4)^2 = 0 }
  //----------------------------------------------------