|
D.2.4.8 PtoCrep
Procedure from library grobcov.lib (see grobcov_lib).
- Usage:
- PtoCrep(list L)
list L= [ Comp_1, .. , Comp_s ] where
list Comp_i=[p_i,[p_i1,..,p_is_i] ], is the P-representation of a locally closed set V(N) - V(M).
To be called in a ring Q[a][x] or a ring Q[a]. But the ideals can contain only the parameters in Q[a].
RETURN:The canonical C-representation [P,Q] of the locally closed set. A pair of radical ideals with P included in Q,
representing the set V(P) - V(Q)
KEYWORDS: locally closed set; canoncial form
EXAMPLE: PtoCrep; shows an example
Example:
| LIB "grobcov.lib";
if(defined(R)){kill R;}
ring R=0,(a,b,c),lp;
short=0;
ideal p=a*(a^2+b^2+c^2-25);
ideal q=a*(a-3),b-4;
def Cr=Crep(p,q);
Cr;
==> [1]:
==> _[1]=a^3+a*b^2+a*c^2-25*a
==> [2]:
==> _[1]=b-4
==> _[2]=a*c
==> _[3]=a^2-3*a
def L=Prep(p,q);
L;
==> [1]:
==> [1]:
==> _[1]=a^2+b^2+c^2-25
==> [2]:
==> [1]:
==> _[1]=c
==> _[2]=b-4
==> _[3]=a-3
==> [2]:
==> _[1]=c+3
==> _[2]=b-4
==> _[3]=a
==> [3]:
==> _[1]=c-3
==> _[2]=b-4
==> _[3]=a
==> [2]:
==> [1]:
==> _[1]=a
==> [2]:
==> [1]:
==> _[1]=b-4
==> _[2]=a
def Cr1=PtoCrep(L);
Cr1;
==> [1]:
==> _[1]=a^3+a*b^2+a*c^2-25*a
==> [2]:
==> _[1]=b-4
==> _[2]=a*c
==> _[3]=a^2-3*a
|
|