Home Online Manual
Top
Back: ConsLevels
Forward: locus
FastBack:
FastForward:
Up: grobcov_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.2.4.12 ConsLevelsToLevels

Procedure from library grobcov.lib (see grobcov_lib).

Usage:
ConsLevelsToLevels(list L);
The input list L must be the output of the call to the routine ConsLevels of a constructible set: L=[a1,a2,..,ak], where the a's are the closures of the levels, determined by ConsLevels. ConsLevelsToLevels selects the levels of the constructible set. To be called in a ring Q[a][x] or a ring Q[a]. But the ideals can contain only the parameters in Q[a].

Return:
The levels of the constructible set:
Lc=[ [1,[a1,a2]],[3,[a3,a4]],..,[2l-1,[a_{2l-1},a_{2l}]] ] the list of Levels of S

Example:
 
LIB "grobcov.lib";
if(defined(R)){kill R;}
ring R=0,(x,y,z),lp;
short=0;
ideal P1=(x^2+y^2+z^2-1);
ideal Q1=z,x^2+y^2-1;
ideal P2=y,x^2+z^2-1;
ideal Q2=z*(z+1),y,x*(x+1);
ideal P3=x;
ideal Q3=5*z-4,5*y-3,x;
list Cr1=Crep(P1,Q1);
list Cr2=Crep(P2,Q2);
list Cr3=Crep(P3,Q3);
list L=list(Cr1,Cr2,Cr3);
L;
==> [1]:
==>    [1]:
==>       _[1]=x^2+y^2+z^2-1
==>    [2]:
==>       _[1]=z
==>       _[2]=x^2+y^2-1
==> [2]:
==>    [1]:
==>       _[1]=y
==>       _[2]=x^2+z^2-1
==>    [2]:
==>       _[1]=z^2+z
==>       _[2]=y
==>       _[3]=x+z+1
==> [3]:
==>    [1]:
==>       _[1]=x
==>    [2]:
==>       _[1]=5*z-4
==>       _[2]=5*y-3
==>       _[3]=x
def LL=ConsLevels(L);
LL;
==> [1]:
==>    _[1]=x^3+x*y^2+x*z^2-x
==> [2]:
==>    _[1]=z
==>    _[2]=x^2+y^2-1
==> [3]:
==>    _[1]=z
==>    _[2]=x+y^2-1
==>    _[3]=x*y
==>    _[4]=x^2-x
==> [4]:
==>    _[1]=1
ConsLevelsToLevels(LL);
==> [1]:
==>    [1]:
==>       1
==>    [2]:
==>       [1]:
==>          _[1]=x^3+x*y^2+x*z^2-x
==>       [2]:
==>          _[1]=z
==>          _[2]=x^2+y^2-1
==> [2]:
==>    [1]:
==>       3
==>    [2]:
==>       [1]:
==>          _[1]=z
==>          _[2]=x+y^2-1
==>          _[3]=x*y
==>          _[4]=x^2-x
==>       [2]:
==>          _[1]=1