Home Online Manual
Top
Back: intersectMon
Forward: radicalMon
FastBack:
FastForward:
Up: monomialideal_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.4.14.7 quotientMon

Procedure from library monomialideal.lib (see monomialideal_lib).

Usage:
quotientMon (I,J); I,J ideals.

Return:
an ideal, the quotient I:J.
(returns -1 if I or J is not monomial)

Assume:
I,J are monomial ideals of the basering.

Note:
the minimal monomial generating set is returned.

Example:
 
LIB "monomialideal.lib";
ring R = 0,(w,x,y,z,t),lp;
ideal I = w^3*x*y,w*x*y*z*t,x^2*y^2*z^2,x^2*z^4*t^3,y^3*z;
ideal J = w*x, x^2, y*z*t, y^5*t;
quotientMon (I,J);
==> _[1]=y2z2t
==> _[2]=y3z
==> _[3]=xy2z2
==> _[4]=x2z4t3
==> _[5]=wy2zt
==> _[6]=wxz4t3
==> _[7]=wxyzt
==> _[8]=w2y2z2
==> _[9]=w3y2z
==> _[10]=w3xy