|
D.4.14.7 quotientMon
Procedure from library monomialideal.lib (see monomialideal_lib).
- Usage:
- quotientMon (I,J); I,J ideals.
- Return:
- an ideal, the quotient I:J.
(returns -1 if I or J is not monomial)
- Assume:
- I,J are monomial ideals of the basering.
- Note:
- the minimal monomial generating set is returned.
Example:
| LIB "monomialideal.lib";
ring R = 0,(w,x,y,z,t),lp;
ideal I = w^3*x*y,w*x*y*z*t,x^2*y^2*z^2,x^2*z^4*t^3,y^3*z;
ideal J = w*x, x^2, y*z*t, y^5*t;
quotientMon (I,J);
==> _[1]=y2z2t
==> _[2]=y3z
==> _[3]=xy2z2
==> _[4]=x2z4t3
==> _[5]=wy2zt
==> _[6]=wxz4t3
==> _[7]=wxyzt
==> _[8]=w2y2z2
==> _[9]=w3y2z
==> _[10]=w3xy
|
|