| LIB "decodegb.lib";
// Newton identities for a binary 3-error-correcting cyclic code of
//length 31 with defining set (1,5,7)
int n=31; // length
list defset=1,5,7; //defining set
int t=3; // number of errors
int q=2; // basefield size
int m=5; // degree extension of the splitting field
int tr=1; // indicator of triangular form of Newton identities
def A=sysNewton(n,defset,t,q,m);
setring A;
A; // shows the ring we are working in
==> // coefficients: ZZ/2(a)
==> // number of vars : 34
==> // block 1 : ordering lp
==> // : names S(31) S(30) S(29) S(28) S(27) S(26) S(25) \
S(24) S(23) S(22) S(21) S(20) S(19) S(18) S(17) S(16) S(15) S(14) S(13) S\
(12) S(11) S(10) S(9) S(8) S(6) S(4) S(3) S(2) sigma(1) sigma(2) sigma(3)\
S(7) S(5) S(1)
==> // block 2 : ordering C
print(newton); // generalized Newton identities
==> S(31)*sigma(1)+S(30)*sigma(2)+S(29)*sigma(3)+S(1),
==> S(31)*sigma(2)+S(30)*sigma(3)+S(2)+sigma(1)*S(1),
==> S(31)*sigma(3)+S(3)+S(2)*sigma(1)+sigma(2)*S(1),
==> S(4)+S(3)*sigma(1)+S(2)*sigma(2)+sigma(3)*S(1),
==> S(4)*sigma(1)+S(3)*sigma(2)+S(2)*sigma(3)+S(5),
==> S(6)+S(4)*sigma(2)+S(3)*sigma(3)+sigma(1)*S(5),
==> S(6)*sigma(1)+S(4)*sigma(3)+sigma(2)*S(5)+S(7),
==> S(8)+S(6)*sigma(2)+sigma(1)*S(7)+sigma(3)*S(5),
==> S(9)+S(8)*sigma(1)+S(6)*sigma(3)+sigma(2)*S(7),
==> S(10)+S(9)*sigma(1)+S(8)*sigma(2)+sigma(3)*S(7),
==> S(11)+S(10)*sigma(1)+S(9)*sigma(2)+S(8)*sigma(3),
==> S(12)+S(11)*sigma(1)+S(10)*sigma(2)+S(9)*sigma(3),
==> S(13)+S(12)*sigma(1)+S(11)*sigma(2)+S(10)*sigma(3),
==> S(14)+S(13)*sigma(1)+S(12)*sigma(2)+S(11)*sigma(3),
==> S(15)+S(14)*sigma(1)+S(13)*sigma(2)+S(12)*sigma(3),
==> S(16)+S(15)*sigma(1)+S(14)*sigma(2)+S(13)*sigma(3),
==> S(17)+S(16)*sigma(1)+S(15)*sigma(2)+S(14)*sigma(3),
==> S(18)+S(17)*sigma(1)+S(16)*sigma(2)+S(15)*sigma(3),
==> S(19)+S(18)*sigma(1)+S(17)*sigma(2)+S(16)*sigma(3),
==> S(20)+S(19)*sigma(1)+S(18)*sigma(2)+S(17)*sigma(3),
==> S(21)+S(20)*sigma(1)+S(19)*sigma(2)+S(18)*sigma(3),
==> S(22)+S(21)*sigma(1)+S(20)*sigma(2)+S(19)*sigma(3),
==> S(23)+S(22)*sigma(1)+S(21)*sigma(2)+S(20)*sigma(3),
==> S(24)+S(23)*sigma(1)+S(22)*sigma(2)+S(21)*sigma(3),
==> S(25)+S(24)*sigma(1)+S(23)*sigma(2)+S(22)*sigma(3),
==> S(26)+S(25)*sigma(1)+S(24)*sigma(2)+S(23)*sigma(3),
==> S(27)+S(26)*sigma(1)+S(25)*sigma(2)+S(24)*sigma(3),
==> S(28)+S(27)*sigma(1)+S(26)*sigma(2)+S(25)*sigma(3),
==> S(29)+S(28)*sigma(1)+S(27)*sigma(2)+S(26)*sigma(3),
==> S(30)+S(29)*sigma(1)+S(28)*sigma(2)+S(27)*sigma(3),
==> S(31)+S(30)*sigma(1)+S(29)*sigma(2)+S(28)*sigma(3),
==> sigma(1)^32+sigma(1),
==> sigma(2)^32+sigma(2),
==> sigma(3)^32+sigma(3),
==> S(2)+S(1)^2,
==> S(4)+S(2)^2,
==> S(6)+S(3)^2,
==> S(8)+S(4)^2,
==> S(10)+S(5)^2,
==> S(12)+S(6)^2,
==> S(14)+S(7)^2,
==> S(16)+S(8)^2,
==> S(18)+S(9)^2,
==> S(20)+S(10)^2,
==> S(22)+S(11)^2,
==> S(24)+S(12)^2,
==> S(26)+S(13)^2,
==> S(28)+S(14)^2,
==> S(30)+S(15)^2,
==> S(16)^2+S(1),
==> S(17)^2+S(3),
==> S(18)^2+S(5),
==> S(19)^2+S(7),
==> S(20)^2+S(9),
==> S(21)^2+S(11),
==> S(22)^2+S(13),
==> S(23)^2+S(15),
==> S(24)^2+S(17),
==> S(25)^2+S(19),
==> S(26)^2+S(21),
==> S(27)^2+S(23),
==> S(28)^2+S(25),
==> S(29)^2+S(27),
==> S(30)^2+S(29),
==> S(31)^2+S(31)
//===============================
A=sysNewton(n,defset,t,q,m,tr);
setring A;
print(newton); // generalized Newton identities in triangular form
==> sigma(1)+S(1),
==> S(2)+sigma(1)*S(1),
==> S(3)+S(2)*sigma(1)+sigma(2)*S(1)+sigma(3),
==> S(4)+S(3)*sigma(1)+S(2)*sigma(2)+sigma(3)*S(1),
==> S(4)*sigma(1)+S(3)*sigma(2)+S(2)*sigma(3)+S(5),
==> S(6)+S(4)*sigma(2)+S(3)*sigma(3)+sigma(1)*S(5),
==> S(6)*sigma(1)+S(4)*sigma(3)+sigma(2)*S(5)+S(7),
==> S(8)+S(6)*sigma(2)+sigma(1)*S(7)+sigma(3)*S(5),
==> S(9)+S(8)*sigma(1)+S(6)*sigma(3)+sigma(2)*S(7),
==> S(10)+S(9)*sigma(1)+S(8)*sigma(2)+sigma(3)*S(7),
==> S(11)+S(10)*sigma(1)+S(9)*sigma(2)+S(8)*sigma(3),
==> S(12)+S(11)*sigma(1)+S(10)*sigma(2)+S(9)*sigma(3),
==> S(13)+S(12)*sigma(1)+S(11)*sigma(2)+S(10)*sigma(3),
==> S(14)+S(13)*sigma(1)+S(12)*sigma(2)+S(11)*sigma(3),
==> S(15)+S(14)*sigma(1)+S(13)*sigma(2)+S(12)*sigma(3),
==> S(16)+S(15)*sigma(1)+S(14)*sigma(2)+S(13)*sigma(3),
==> S(17)+S(16)*sigma(1)+S(15)*sigma(2)+S(14)*sigma(3),
==> S(18)+S(17)*sigma(1)+S(16)*sigma(2)+S(15)*sigma(3),
==> S(19)+S(18)*sigma(1)+S(17)*sigma(2)+S(16)*sigma(3),
==> S(20)+S(19)*sigma(1)+S(18)*sigma(2)+S(17)*sigma(3),
==> S(21)+S(20)*sigma(1)+S(19)*sigma(2)+S(18)*sigma(3),
==> S(22)+S(21)*sigma(1)+S(20)*sigma(2)+S(19)*sigma(3),
==> S(23)+S(22)*sigma(1)+S(21)*sigma(2)+S(20)*sigma(3),
==> S(24)+S(23)*sigma(1)+S(22)*sigma(2)+S(21)*sigma(3),
==> S(25)+S(24)*sigma(1)+S(23)*sigma(2)+S(22)*sigma(3),
==> S(26)+S(25)*sigma(1)+S(24)*sigma(2)+S(23)*sigma(3),
==> S(27)+S(26)*sigma(1)+S(25)*sigma(2)+S(24)*sigma(3),
==> S(28)+S(27)*sigma(1)+S(26)*sigma(2)+S(25)*sigma(3),
==> S(29)+S(28)*sigma(1)+S(27)*sigma(2)+S(26)*sigma(3),
==> S(30)+S(29)*sigma(1)+S(28)*sigma(2)+S(27)*sigma(3),
==> S(31)+S(30)*sigma(1)+S(29)*sigma(2)+S(28)*sigma(3),
==> sigma(1)^32+sigma(1),
==> sigma(2)^32+sigma(2),
==> sigma(3)^32+sigma(3),
==> S(2)+S(1)^2,
==> S(4)+S(2)^2,
==> S(6)+S(3)^2,
==> S(8)+S(4)^2,
==> S(10)+S(5)^2,
==> S(12)+S(6)^2,
==> S(14)+S(7)^2,
==> S(16)+S(8)^2,
==> S(18)+S(9)^2,
==> S(20)+S(10)^2,
==> S(22)+S(11)^2,
==> S(24)+S(12)^2,
==> S(26)+S(13)^2,
==> S(28)+S(14)^2,
==> S(30)+S(15)^2,
==> S(16)^2+S(1),
==> S(17)^2+S(3),
==> S(18)^2+S(5),
==> S(19)^2+S(7),
==> S(20)^2+S(9),
==> S(21)^2+S(11),
==> S(22)^2+S(13),
==> S(23)^2+S(15),
==> S(24)^2+S(17),
==> S(25)^2+S(19),
==> S(26)^2+S(21),
==> S(27)^2+S(23),
==> S(28)^2+S(25),
==> S(29)^2+S(27),
==> S(30)^2+S(29),
==> S(31)^2+S(31)
|