|
D.13.4.4 displayPuiseuxExpansion
Procedure from library tropical.lib (see tropical_lib).
- Usage:
- displayPuiseuxExpansion(puiseux[,#]); puiseux list, # list
- Assume:
- puiseux is the output of puiseuxExpansion; the optional parameter
# can be the string 'subst'
- Return:
- none
- Note:
- - the procedure displays the output of the procedure puiseuxExpansion
- if the optional parameter 'subst' is given, then the expansion is
substituted into the polynomial and the result is displayed
- if the base field had a parameter and a minimal polynomial, then the
new base field will have a parameter and a minimal polynomial;
var(2) is the old parameter and it is displayed how the old parameter
can be computed from the new one
Example:
| LIB "tropical.lib";
==> Welcome to polymake version
==> Copyright (c) 1997-2015
==> Ewgenij Gawrilow, Michael Joswig (TU Darmstadt)
==> http://www.polymake.org
ring r=0,(x,y),ds;
poly f=x2-y4+x5y7;
displayPuiseuxExpansion(puiseuxExpansion(f,3));
==> !!!! WARNING: The number of terms computed in the Puiseux expansion were
==> !!!! not enough to find all branches of the curve singularity!
==> =============================
==> 1. Expansion:
==>
==> The Puiseux expansion lives in the ring
==> Q[[t^(1/2)]]
==>
==> The expansion has the form:
==> y=(1)*t^(1/2) + (1/4)*t^(14/2)
==>
==> =============================
==> 2. Expansion:
==>
==> The Puiseux expansion lives in the ring
==> Q[[t^(1/2)]]
==>
==> The expansion has the form:
==> y=(-1)*t^(1/2) + (1/4)*t^(14/2)
==>
==> =============================
==> 3. Expansion:
==>
==> The Puiseux expansion lives in the ring
==> Q[a]/0[[t^(1/2)]]
==>
==> The expansion has the form:
==> y=(a)*t^(1/2) + (1/4)*t^(14/2)
==>
|
|