|
D.13.4.23 texDrawNewtonSubdivision
Procedure from library tropical.lib (see tropical_lib).
- Usage:
- texDrawNewtonSubdivision(graph[,#]); graph list, # optional list
- Assume:
- graph is the output of tropicalCurve
- Return:
- string, the texdraw code of the Newton subdivision of the
tropical plane curve encoded by graph
- Note:
- - the list # may contain optional arguments, of which only
one will be considered, namely the first entry of type 'poly';
this entry should be a rational number which specifies the
scaling factor to be used; if it is missing, the factor will
be computed; the list # may as well be empty
- note that lattice points in the Newton subdivision which are
black correspond to markings of the marked subdivision,
while lattice points in grey are not marked
Example:
| LIB "tropical.lib";
==> Welcome to polymake version
==> Copyright (c) 1997-2015
==> Ewgenij Gawrilow, Michael Joswig (TU Darmstadt)
==> http://www.polymake.org
ring r=(0,t),(x,y),dp;
poly f=x+y+x2y+xy2+1/t*xy;
list graph=tropicalCurve(f);
// compute the texdraw code of the Newton subdivision of the tropical curve
texDrawNewtonSubdivision(graph);
==>
==> \begin{texdraw}
==> \drawdim cm \relunitscale 1
==> \linewd 0.05
==> \move (1 2)
==> \lvec (2 1)
==> \move (2 1)
==> \lvec (1 0)
==> \move (1 0)
==> \lvec (0 1)
==> \move (0 1)
==> \lvec (1 2)
==>
==>
==> \move (2 1)
==> \lvec (1 1)
==> \move (1 1)
==> \lvec (1 2)
==> \move (1 0)
==> \lvec (1 1)
==> \move (1 1)
==> \lvec (0 1)
==> \move (0 0) \fcir f:0.6 r:0.03
==> \move (0 1) \fcir f:0.6 r:0.03
==> \move (0 2) \fcir f:0.6 r:0.03
==> \move (1 0) \fcir f:0.6 r:0.03
==> \move (1 1) \fcir f:0.6 r:0.03
==> \move (1 2) \fcir f:0.6 r:0.03
==> \move (2 0) \fcir f:0.6 r:0.03
==> \move (2 1) \fcir f:0.6 r:0.03
==> \move (2 2) \fcir f:0.6 r:0.03
==> \move (2 1)
==> \fcir f:0 r:0.04
==> \move (1 2)
==> \fcir f:0 r:0.04
==> \move (1 1)
==> \fcir f:0 r:0.04
==> \move (1 0)
==> \fcir f:0 r:0.04
==> \move (0 1)
==> \fcir f:0 r:0.04
==> \end{texdraw}
==>
|
|