|
D.15.1.6 autX
Procedure from library autgradalg.lib (see autgradalg_lib).
- Usage:
- autX(RL, w, TOR); RL: ideal, w: intvec, TOR: optional list of integers.
- Purpose:
- compute generators for the hopf algebra O(Aut(X))
of the Mori dream space X given by Cox(X) := basering/RL and
the ample class w.
- Assume:
- there is no torsion.
- Return:
- a ring. Also exports an ideal Iexported.
Example:
| LIB "autgradalg.lib";
/////////////
// PP2
// intmat Q[1][4] =
// 1,1,1,1;
//
// ring R = 0,T(1..ncols(Q)),dp;
//
// // attach degree matrix Q to R:
// setBaseMultigrading(Q);
// ideal I = 0;
// intvec w0 = 1;
//
// def RR = autX(I, w0);
// setring RR;
// Iexported;
//
// basering;
// dim(std(Iexported));
//
// kill RR, Q, R;
//
// quit;
// /////////////
// // example 3.14 from the paper
// intmat Q[3][5] =
// 1,1,1,1,1,
// 1,-1,0,0,1,
// 1,1,1,0,0;
//
// list TOR = 2;
// ring R = 0,T(1..5),dp;
//
// // attach degree matrix Q to R:
// setBaseMultigrading(Q);
//
// ideal I = T(1)*T(2) + T(3)^2 + T(4)^2;
// list TOR = 2;
//
// intvec w0 = 2,1,0;
// def RR = autX(I, w0, TOR);
// setring RR;
//
// kill RR, Q, R;
|
|