|
D.15.24.2 rcolon
Procedure from library ncHilb.lib (see ncHilb_lib).
- Usage:
- rcolon(list of relations, a monomial, an integer);
L is a list of modules (each module represents a monomial),
w is a monomail
d is an integer for the degree bound (maximal total degree of
monomials of the generating set of the input monomial ideal),
- Note :
- A two-sided monomial ideal and a monomial w for the input should be given
in a special form. This form is a list of modules, where the generator
of every module represents a monomial times a coefficient in the free
associative algebra. The first entry, in each generator, represents a
coefficient, that is 1, and every next entry is a variable.
Ex: module p1=[1,y,z], represents the monomial y*z;
module p2=[1,x,z,x], represents the monomial x*z*x
for more details about the input, see examples.
Example:
| LIB "ncHilb.lib";
ring r=0,(X,Y,Z),dp;
module w =[1,Y];
module p1 =[1,Y,Z];
module p2 =[1,Y,Z,X];
module p3 =[1,Y,Z,Z,X,Z];
module p4 =[1,Y,Z,Z,Z,X,Z];
module p5 =[1,Y,Z,Z,Z,Z,X,Z];
module p6 =[1,Y,Z,Z,Z,Z,Z,X,Z];
module p7 =[1,Y,Z,Z,Z,Z,Z,Z,X,Z];
module p8 =[1,Y,Z,Z,Z,Z,Z,Z,Z,X,Z];
list l1=list(p1,p2,p3,p4,p5,p6,p7,p8);
rcolon(l1,w,10);
==> [1]:
==> Z
==> + generators of the given ideal;
|
|