Home Online Manual
Top
Back: netPrimePower
Forward: netString
FastBack:
FastForward:
Up: nets_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.15.27.21 netRing

Procedure from library nets.lib (see nets_lib).

Usage:
netRing(f); f ring

Assume:
R is a ring

Return:
visual presentation of R

Theory:
A Singular object is converted into a character array (a Net) for on screen printing.

Example:
 
LIB "nets.lib";
// from 3.3.1 Examples of ring declarations
ring r1 = 32003,(x,y,z),dp;
netRing(r1);
==> FF_32003[x,y,z]
==> 
//
ring r2 = 32003,(x(1..10)),dp;
netRing(r2);
==> FF_32003[x(1),x(2),x(3),x(4),x(5),x(6),x(7),x(8),x(9),x(10)]
==> 
//
ring r3 = 32003,(x(1..5)(1..8)),dp;
netRing(r3);
==> FF_32003[x(1)(1),x(1)(2),x(1)(3),x(1)(4),x(1)(5),x(1)(6),x(1)(7),x(1)(8),\
   x(2)(1),x(2)(2),x(2)(3),x(2)(4),x(2)(5),x(2)(6),x(2)(7),x(2)(8),x(3)(1),x\
   (3)(2),x(3)(3),x(3)(4),x(3)(5),x(3)(6),x(3)(7),x(3)(8),x(4)(1),x(4)(2),x(\
   4)(3),x(4)(4),x(4)(5),x(4)(6),x(4)(7),x(4)(8),x(5)(1),x(5)(2),x(5)(3),x(5\
   )(4),x(5)(5),x(5)(6),x(5)(7),x(5)(8)]
==> 
//
ring r4 = 0,(a,b,c,d),lp;
netRing(r4);
==> QQ[a,b,c,d]
==> 
//
ring r5 = 7,(x,y,z),ds;
netRing(r5);
==> FF_7[x,y,z]
==> 
//
ring r6 = 10,(x,y,z),ds;
==> // ** 10 is invalid as characteristic of the ground field. 32003 is used.
netRing(r6);
==> FF_32003[x,y,z]
==> 
//
ring r7 = 7,(x(1..6)),(lp(3),dp);
netRing(r7);
==> FF_7[x(1),x(2),x(3),x(4),x(5),x(6)]
==> 
//
ring r8 = 0,(x,y,z,a,b,c),(ds(3), dp(3));
netRing(r8);
==> QQ[x,y,z,a,b,c]
==> 
//
ring r9 = 0,(x,y,z),(c,wp(2,1,3));
netRing(r9);
==> QQ[x,y,z]
==> 
//
ring r10 = (7,a,b,c),(x,y,z),Dp;
netRing(r10);
==> FF_7(a,b,c)[x,y,z]
==> 
//
ring r11 = (7,a),(x,y,z),dp;
minpoly = a^2+a+3;
netRing(r11);
==> FF_7[a]/(a2+a+3)[x,y,z]
==> 
//
ring r12 = (7^2,a),(x,y,z),dp;
netRing(r12);
==> FF_7^2[x,y,z]
==> 
//
ring r13 = real,(x,y,z),dp;
netRing(r13);
==> QQ(6,6)[x,y,z]
==> 
//
ring r14 = (real,50),(x,y,z),dp;
netRing(r14);
==> QQ(50,50)[x,y,z]
==> 
//
ring r15 = (real,10,50),(x,y,z),dp;
netRing(r15);
==> QQ(10,50)[x,y,z]
==> 
//
ring r16 = (complex,30,j),(x,y,z),dp;
netRing(r16);
==> QQ(30,30)[x,y,z]
==> 
//
ring r17 = complex,(x,y,z),dp;
netRing(r17);
==> QQ(6,6)[x,y,z]
==> 
//
ring R = 7,(x,y,z), dp;
qring r18 = std(maxideal(2));
netRing(r18);
==> FF_7[x,y,z] / <z2, yz, xz, y2, xy, x2>
==>