|
7.7.7.0. ivKDim
Procedure from library fpadim.lib (see fpadim_lib).
- Usage:
- ivKDim(L,n[,degbound]); L a list of intmats,
n an integer, degbound an optional integer
- Return:
- int, the K-dimension of A/<L>
- Purpose:
- Computing the K-dimension of A/<L>
- Assume:
- - basering is a Letterplace ring.
- all rows of each intmat correspond to a Letterplace monomial
- if you specify a different degree bound degbound,
degbound <= attrib(basering,uptodeg) holds.
- Note:
- - If degbound is set, a degree bound will be added. By default there
is no degree bound.
- n is the number of variables.
- If the K-dimension is known to be infinite, a degree bound is needed
Example:
| LIB "fpadim.lib";
ring r = 0,(x,y),dp;
def R = makeLetterplaceRing(5); // constructs a Letterplace ring
R;
==> // coefficients: QQ
==> // number of vars : 10
==> // block 1 : ordering a
==> // : names x(1) y(1) x(2) y(2) x(3) y(3) x(4) y(4) x(\
5) y(5)
==> // : weights 1 1 1 1 1 1 1 1 \
1 1
==> // block 2 : ordering dp
==> // : names x(1) y(1)
==> // block 3 : ordering dp
==> // : names x(2) y(2)
==> // block 4 : ordering dp
==> // : names x(3) y(3)
==> // block 5 : ordering dp
==> // : names x(4) y(4)
==> // block 6 : ordering dp
==> // : names x(5) y(5)
==> // block 7 : ordering C
setring R; // sets basering to Letterplace ring
//some intmats, which contain monomials in intvec representation as rows
intmat I1 [2][2] = 1,1,2,2; intmat I2 [1][3] = 1,2,1;
intmat J1 [1][2] = 1,1; intmat J2 [2][3] = 2,1,2,1,2,1;
print(I1);
==> 1 1
==> 2 2
print(I2);
==> 1 2 1
print(J1);
==> 1 1
print(J2);
==> 2 1 2
==> 1 2 1
list G = I1,I2; // ideal, which is already a Groebner basis
list I = J1,J2; // ideal, which is already a Groebner basis
ivKDim(G,2); // invokes the procedure without any degree bound
==> 6
ivKDim(I,2,5); // invokes the procedure with degree bound 5
==> 17
|
|