Home Online Manual
Top
Back: sickle
Forward: lpMaxIdeal
FastBack:
FastForward:
Up: fpadim_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document
7.7.7.0. ivMaxIdeal
Procedure from library fpadim.lib (see fpadim_lib).

Usage:
lpMaxIdeal(l, lonly); l an integer, lonly an integer
RETURN: list
PURPOSE: computes a list of free monomials in intvec presentation
with length <= l
if donly <> 0, only monomials of degree d are returned ASSUME: - basering is a Letterplace ring.
NOTE: see also lpMaxIdeal()

Example:
 
LIB "fpadim.lib";
ring r = 0,(a,b,c),dp;
def R = makeLetterplaceRing(7); setring R;
ivMaxIdeal(1,0);
==> [1]:
==>    3
==> [2]:
==>    2
==> [3]:
==>    1
ivMaxIdeal(2,0);
==> [1]:
==>    3
==> [2]:
==>    2
==> [3]:
==>    1
==> [4]:
==>    1,3
==> [5]:
==>    1,2
==> [6]:
==>    1,1
==> [7]:
==>    2,3
==> [8]:
==>    2,2
==> [9]:
==>    2,1
==> [10]:
==>    3,3
==> [11]:
==>    3,2
==> [12]:
==>    3,1
ivMaxIdeal(2,1);
==> [1]:
==>    1,3
==> [2]:
==>    1,2
==> [3]:
==>    1,1
==> [4]:
==>    2,3
==> [5]:
==>    2,2
==> [6]:
==>    2,1
==> [7]:
==>    3,3
==> [8]:
==>    3,2
==> [9]:
==>    3,1
ivMaxIdeal(4,0);
==> [1]:
==>    3
==> [2]:
==>    2
==> [3]:
==>    1
==> [4]:
==>    1,3
==> [5]:
==>    1,2
==> [6]:
==>    1,1
==> [7]:
==>    2,3
==> [8]:
==>    2,2
==> [9]:
==>    2,1
==> [10]:
==>    3,3
==> [11]:
==>    3,2
==> [12]:
==>    3,1
==> [13]:
==>    3,1,3
==> [14]:
==>    3,1,2
==> [15]:
==>    3,1,1
==> [16]:
==>    3,2,3
==> [17]:
==>    3,2,2
==> [18]:
==>    3,2,1
==> [19]:
==>    3,3,3
==> [20]:
==>    3,3,2
==> [21]:
==>    3,3,1
==> [22]:
==>    2,1,3
==> [23]:
==>    2,1,2
==> [24]:
==>    2,1,1
==> [25]:
==>    2,2,3
==> [26]:
==>    2,2,2
==> [27]:
==>    2,2,1
==> [28]:
==>    2,3,3
==> [29]:
==>    2,3,2
==> [30]:
==>    2,3,1
==> [31]:
==>    1,1,3
==> [32]:
==>    1,1,2
==> [33]:
==>    1,1,1
==> [34]:
==>    1,2,3
==> [35]:
==>    1,2,2
==> [36]:
==>    1,2,1
==> [37]:
==>    1,3,3
==> [38]:
==>    1,3,2
==> [39]:
==>    1,3,1
==> [40]:
==>    1,3,1,3
==> [41]:
==>    1,3,1,2
==> [42]:
==>    1,3,1,1
==> [43]:
==>    1,3,2,3
==> [44]:
==>    1,3,2,2
==> [45]:
==>    1,3,2,1
==> [46]:
==>    1,3,3,3
==> [47]:
==>    1,3,3,2
==> [48]:
==>    1,3,3,1
==> [49]:
==>    1,2,1,3
==> [50]:
==>    1,2,1,2
==> [51]:
==>    1,2,1,1
==> [52]:
==>    1,2,2,3
==> [53]:
==>    1,2,2,2
==> [54]:
==>    1,2,2,1
==> [55]:
==>    1,2,3,3
==> [56]:
==>    1,2,3,2
==> [57]:
==>    1,2,3,1
==> [58]:
==>    1,1,1,3
==> [59]:
==>    1,1,1,2
==> [60]:
==>    1,1,1,1
==> [61]:
==>    1,1,2,3
==> [62]:
==>    1,1,2,2
==> [63]:
==>    1,1,2,1
==> [64]:
==>    1,1,3,3
==> [65]:
==>    1,1,3,2
==> [66]:
==>    1,1,3,1
==> [67]:
==>    2,3,1,3
==> [68]:
==>    2,3,1,2
==> [69]:
==>    2,3,1,1
==> [70]:
==>    2,3,2,3
==> [71]:
==>    2,3,2,2
==> [72]:
==>    2,3,2,1
==> [73]:
==>    2,3,3,3
==> [74]:
==>    2,3,3,2
==> [75]:
==>    2,3,3,1
==> [76]:
==>    2,2,1,3
==> [77]:
==>    2,2,1,2
==> [78]:
==>    2,2,1,1
==> [79]:
==>    2,2,2,3
==> [80]:
==>    2,2,2,2
==> [81]:
==>    2,2,2,1
==> [82]:
==>    2,2,3,3
==> [83]:
==>    2,2,3,2
==> [84]:
==>    2,2,3,1
==> [85]:
==>    2,1,1,3
==> [86]:
==>    2,1,1,2
==> [87]:
==>    2,1,1,1
==> [88]:
==>    2,1,2,3
==> [89]:
==>    2,1,2,2
==> [90]:
==>    2,1,2,1
==> [91]:
==>    2,1,3,3
==> [92]:
==>    2,1,3,2
==> [93]:
==>    2,1,3,1
==> [94]:
==>    3,3,1,3
==> [95]:
==>    3,3,1,2
==> [96]:
==>    3,3,1,1
==> [97]:
==>    3,3,2,3
==> [98]:
==>    3,3,2,2
==> [99]:
==>    3,3,2,1
==> [100]:
==>    3,3,3,3
==> [101]:
==>    3,3,3,2
==> [102]:
==>    3,3,3,1
==> [103]:
==>    3,2,1,3
==> [104]:
==>    3,2,1,2
==> [105]:
==>    3,2,1,1
==> [106]:
==>    3,2,2,3
==> [107]:
==>    3,2,2,2
==> [108]:
==>    3,2,2,1
==> [109]:
==>    3,2,3,3
==> [110]:
==>    3,2,3,2
==> [111]:
==>    3,2,3,1
==> [112]:
==>    3,1,1,3
==> [113]:
==>    3,1,1,2
==> [114]:
==>    3,1,1,1
==> [115]:
==>    3,1,2,3
==> [116]:
==>    3,1,2,2
==> [117]:
==>    3,1,2,1
==> [118]:
==>    3,1,3,3
==> [119]:
==>    3,1,3,2
==> [120]:
==>    3,1,3,1
ivMaxIdeal(4,1);
==> [1]:
==>    1,3,1,3
==> [2]:
==>    1,3,1,2
==> [3]:
==>    1,3,1,1
==> [4]:
==>    1,3,2,3
==> [5]:
==>    1,3,2,2
==> [6]:
==>    1,3,2,1
==> [7]:
==>    1,3,3,3
==> [8]:
==>    1,3,3,2
==> [9]:
==>    1,3,3,1
==> [10]:
==>    1,2,1,3
==> [11]:
==>    1,2,1,2
==> [12]:
==>    1,2,1,1
==> [13]:
==>    1,2,2,3
==> [14]:
==>    1,2,2,2
==> [15]:
==>    1,2,2,1
==> [16]:
==>    1,2,3,3
==> [17]:
==>    1,2,3,2
==> [18]:
==>    1,2,3,1
==> [19]:
==>    1,1,1,3
==> [20]:
==>    1,1,1,2
==> [21]:
==>    1,1,1,1
==> [22]:
==>    1,1,2,3
==> [23]:
==>    1,1,2,2
==> [24]:
==>    1,1,2,1
==> [25]:
==>    1,1,3,3
==> [26]:
==>    1,1,3,2
==> [27]:
==>    1,1,3,1
==> [28]:
==>    2,3,1,3
==> [29]:
==>    2,3,1,2
==> [30]:
==>    2,3,1,1
==> [31]:
==>    2,3,2,3
==> [32]:
==>    2,3,2,2
==> [33]:
==>    2,3,2,1
==> [34]:
==>    2,3,3,3
==> [35]:
==>    2,3,3,2
==> [36]:
==>    2,3,3,1
==> [37]:
==>    2,2,1,3
==> [38]:
==>    2,2,1,2
==> [39]:
==>    2,2,1,1
==> [40]:
==>    2,2,2,3
==> [41]:
==>    2,2,2,2
==> [42]:
==>    2,2,2,1
==> [43]:
==>    2,2,3,3
==> [44]:
==>    2,2,3,2
==> [45]:
==>    2,2,3,1
==> [46]:
==>    2,1,1,3
==> [47]:
==>    2,1,1,2
==> [48]:
==>    2,1,1,1
==> [49]:
==>    2,1,2,3
==> [50]:
==>    2,1,2,2
==> [51]:
==>    2,1,2,1
==> [52]:
==>    2,1,3,3
==> [53]:
==>    2,1,3,2
==> [54]:
==>    2,1,3,1
==> [55]:
==>    3,3,1,3
==> [56]:
==>    3,3,1,2
==> [57]:
==>    3,3,1,1
==> [58]:
==>    3,3,2,3
==> [59]:
==>    3,3,2,2
==> [60]:
==>    3,3,2,1
==> [61]:
==>    3,3,3,3
==> [62]:
==>    3,3,3,2
==> [63]:
==>    3,3,3,1
==> [64]:
==>    3,2,1,3
==> [65]:
==>    3,2,1,2
==> [66]:
==>    3,2,1,1
==> [67]:
==>    3,2,2,3
==> [68]:
==>    3,2,2,2
==> [69]:
==>    3,2,2,1
==> [70]:
==>    3,2,3,3
==> [71]:
==>    3,2,3,2
==> [72]:
==>    3,2,3,1
==> [73]:
==>    3,1,1,3
==> [74]:
==>    3,1,1,2
==> [75]:
==>    3,1,1,1
==> [76]:
==>    3,1,2,3
==> [77]:
==>    3,1,2,2
==> [78]:
==>    3,1,2,1
==> [79]:
==>    3,1,3,3
==> [80]:
==>    3,1,3,2
==> [81]:
==>    3,1,3,1