|
7.7.7.0. ivMaxIdeal
Procedure from library fpadim.lib (see fpadim_lib).
- Usage:
- lpMaxIdeal(l, lonly); l an integer, lonly an integer
RETURN: list
PURPOSE: computes a list of free monomials in intvec presentation
with length <= l
if donly <> 0, only monomials of degree d are returned
ASSUME: - basering is a Letterplace ring.
NOTE: see also lpMaxIdeal()
Example:
| LIB "fpadim.lib";
ring r = 0,(a,b,c),dp;
def R = makeLetterplaceRing(7); setring R;
ivMaxIdeal(1,0);
==> [1]:
==> 3
==> [2]:
==> 2
==> [3]:
==> 1
ivMaxIdeal(2,0);
==> [1]:
==> 3
==> [2]:
==> 2
==> [3]:
==> 1
==> [4]:
==> 1,3
==> [5]:
==> 1,2
==> [6]:
==> 1,1
==> [7]:
==> 2,3
==> [8]:
==> 2,2
==> [9]:
==> 2,1
==> [10]:
==> 3,3
==> [11]:
==> 3,2
==> [12]:
==> 3,1
ivMaxIdeal(2,1);
==> [1]:
==> 1,3
==> [2]:
==> 1,2
==> [3]:
==> 1,1
==> [4]:
==> 2,3
==> [5]:
==> 2,2
==> [6]:
==> 2,1
==> [7]:
==> 3,3
==> [8]:
==> 3,2
==> [9]:
==> 3,1
ivMaxIdeal(4,0);
==> [1]:
==> 3
==> [2]:
==> 2
==> [3]:
==> 1
==> [4]:
==> 1,3
==> [5]:
==> 1,2
==> [6]:
==> 1,1
==> [7]:
==> 2,3
==> [8]:
==> 2,2
==> [9]:
==> 2,1
==> [10]:
==> 3,3
==> [11]:
==> 3,2
==> [12]:
==> 3,1
==> [13]:
==> 3,1,3
==> [14]:
==> 3,1,2
==> [15]:
==> 3,1,1
==> [16]:
==> 3,2,3
==> [17]:
==> 3,2,2
==> [18]:
==> 3,2,1
==> [19]:
==> 3,3,3
==> [20]:
==> 3,3,2
==> [21]:
==> 3,3,1
==> [22]:
==> 2,1,3
==> [23]:
==> 2,1,2
==> [24]:
==> 2,1,1
==> [25]:
==> 2,2,3
==> [26]:
==> 2,2,2
==> [27]:
==> 2,2,1
==> [28]:
==> 2,3,3
==> [29]:
==> 2,3,2
==> [30]:
==> 2,3,1
==> [31]:
==> 1,1,3
==> [32]:
==> 1,1,2
==> [33]:
==> 1,1,1
==> [34]:
==> 1,2,3
==> [35]:
==> 1,2,2
==> [36]:
==> 1,2,1
==> [37]:
==> 1,3,3
==> [38]:
==> 1,3,2
==> [39]:
==> 1,3,1
==> [40]:
==> 1,3,1,3
==> [41]:
==> 1,3,1,2
==> [42]:
==> 1,3,1,1
==> [43]:
==> 1,3,2,3
==> [44]:
==> 1,3,2,2
==> [45]:
==> 1,3,2,1
==> [46]:
==> 1,3,3,3
==> [47]:
==> 1,3,3,2
==> [48]:
==> 1,3,3,1
==> [49]:
==> 1,2,1,3
==> [50]:
==> 1,2,1,2
==> [51]:
==> 1,2,1,1
==> [52]:
==> 1,2,2,3
==> [53]:
==> 1,2,2,2
==> [54]:
==> 1,2,2,1
==> [55]:
==> 1,2,3,3
==> [56]:
==> 1,2,3,2
==> [57]:
==> 1,2,3,1
==> [58]:
==> 1,1,1,3
==> [59]:
==> 1,1,1,2
==> [60]:
==> 1,1,1,1
==> [61]:
==> 1,1,2,3
==> [62]:
==> 1,1,2,2
==> [63]:
==> 1,1,2,1
==> [64]:
==> 1,1,3,3
==> [65]:
==> 1,1,3,2
==> [66]:
==> 1,1,3,1
==> [67]:
==> 2,3,1,3
==> [68]:
==> 2,3,1,2
==> [69]:
==> 2,3,1,1
==> [70]:
==> 2,3,2,3
==> [71]:
==> 2,3,2,2
==> [72]:
==> 2,3,2,1
==> [73]:
==> 2,3,3,3
==> [74]:
==> 2,3,3,2
==> [75]:
==> 2,3,3,1
==> [76]:
==> 2,2,1,3
==> [77]:
==> 2,2,1,2
==> [78]:
==> 2,2,1,1
==> [79]:
==> 2,2,2,3
==> [80]:
==> 2,2,2,2
==> [81]:
==> 2,2,2,1
==> [82]:
==> 2,2,3,3
==> [83]:
==> 2,2,3,2
==> [84]:
==> 2,2,3,1
==> [85]:
==> 2,1,1,3
==> [86]:
==> 2,1,1,2
==> [87]:
==> 2,1,1,1
==> [88]:
==> 2,1,2,3
==> [89]:
==> 2,1,2,2
==> [90]:
==> 2,1,2,1
==> [91]:
==> 2,1,3,3
==> [92]:
==> 2,1,3,2
==> [93]:
==> 2,1,3,1
==> [94]:
==> 3,3,1,3
==> [95]:
==> 3,3,1,2
==> [96]:
==> 3,3,1,1
==> [97]:
==> 3,3,2,3
==> [98]:
==> 3,3,2,2
==> [99]:
==> 3,3,2,1
==> [100]:
==> 3,3,3,3
==> [101]:
==> 3,3,3,2
==> [102]:
==> 3,3,3,1
==> [103]:
==> 3,2,1,3
==> [104]:
==> 3,2,1,2
==> [105]:
==> 3,2,1,1
==> [106]:
==> 3,2,2,3
==> [107]:
==> 3,2,2,2
==> [108]:
==> 3,2,2,1
==> [109]:
==> 3,2,3,3
==> [110]:
==> 3,2,3,2
==> [111]:
==> 3,2,3,1
==> [112]:
==> 3,1,1,3
==> [113]:
==> 3,1,1,2
==> [114]:
==> 3,1,1,1
==> [115]:
==> 3,1,2,3
==> [116]:
==> 3,1,2,2
==> [117]:
==> 3,1,2,1
==> [118]:
==> 3,1,3,3
==> [119]:
==> 3,1,3,2
==> [120]:
==> 3,1,3,1
ivMaxIdeal(4,1);
==> [1]:
==> 1,3,1,3
==> [2]:
==> 1,3,1,2
==> [3]:
==> 1,3,1,1
==> [4]:
==> 1,3,2,3
==> [5]:
==> 1,3,2,2
==> [6]:
==> 1,3,2,1
==> [7]:
==> 1,3,3,3
==> [8]:
==> 1,3,3,2
==> [9]:
==> 1,3,3,1
==> [10]:
==> 1,2,1,3
==> [11]:
==> 1,2,1,2
==> [12]:
==> 1,2,1,1
==> [13]:
==> 1,2,2,3
==> [14]:
==> 1,2,2,2
==> [15]:
==> 1,2,2,1
==> [16]:
==> 1,2,3,3
==> [17]:
==> 1,2,3,2
==> [18]:
==> 1,2,3,1
==> [19]:
==> 1,1,1,3
==> [20]:
==> 1,1,1,2
==> [21]:
==> 1,1,1,1
==> [22]:
==> 1,1,2,3
==> [23]:
==> 1,1,2,2
==> [24]:
==> 1,1,2,1
==> [25]:
==> 1,1,3,3
==> [26]:
==> 1,1,3,2
==> [27]:
==> 1,1,3,1
==> [28]:
==> 2,3,1,3
==> [29]:
==> 2,3,1,2
==> [30]:
==> 2,3,1,1
==> [31]:
==> 2,3,2,3
==> [32]:
==> 2,3,2,2
==> [33]:
==> 2,3,2,1
==> [34]:
==> 2,3,3,3
==> [35]:
==> 2,3,3,2
==> [36]:
==> 2,3,3,1
==> [37]:
==> 2,2,1,3
==> [38]:
==> 2,2,1,2
==> [39]:
==> 2,2,1,1
==> [40]:
==> 2,2,2,3
==> [41]:
==> 2,2,2,2
==> [42]:
==> 2,2,2,1
==> [43]:
==> 2,2,3,3
==> [44]:
==> 2,2,3,2
==> [45]:
==> 2,2,3,1
==> [46]:
==> 2,1,1,3
==> [47]:
==> 2,1,1,2
==> [48]:
==> 2,1,1,1
==> [49]:
==> 2,1,2,3
==> [50]:
==> 2,1,2,2
==> [51]:
==> 2,1,2,1
==> [52]:
==> 2,1,3,3
==> [53]:
==> 2,1,3,2
==> [54]:
==> 2,1,3,1
==> [55]:
==> 3,3,1,3
==> [56]:
==> 3,3,1,2
==> [57]:
==> 3,3,1,1
==> [58]:
==> 3,3,2,3
==> [59]:
==> 3,3,2,2
==> [60]:
==> 3,3,2,1
==> [61]:
==> 3,3,3,3
==> [62]:
==> 3,3,3,2
==> [63]:
==> 3,3,3,1
==> [64]:
==> 3,2,1,3
==> [65]:
==> 3,2,1,2
==> [66]:
==> 3,2,1,1
==> [67]:
==> 3,2,2,3
==> [68]:
==> 3,2,2,2
==> [69]:
==> 3,2,2,1
==> [70]:
==> 3,2,3,3
==> [71]:
==> 3,2,3,2
==> [72]:
==> 3,2,3,1
==> [73]:
==> 3,1,1,3
==> [74]:
==> 3,1,1,2
==> [75]:
==> 3,1,1,1
==> [76]:
==> 3,1,2,3
==> [77]:
==> 3,1,2,2
==> [78]:
==> 3,1,2,1
==> [79]:
==> 3,1,3,3
==> [80]:
==> 3,1,3,2
==> [81]:
==> 3,1,3,1
|
|